
We have seen how to interpret derivatives as slopes and rates of change. We
have seen how to estimate derivatives of functions given by tables of values. We
have learned how to graph derivatives of functions that are defined graphically.
We have used the definition of a derivative to calculate the derivatives of func-
tions defined by formulas. But it would be tedious if we always had to use the
definition, so in this chapter we develop rules for finding derivatives without
havìng to use the definition directly. These differentiation rules enable us to
calculate with relative ease the derivatives of polynomials, rational functions,
algebraic functions, exponential and logarithmic f unctions, and trigonometric and
inverse trigonometric functions. We then use these rules to solve problems
involving rates of change, tangents to parametr¡c curves, and the approximation
of functìons.
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Derivatives of Polynomials and Exponential Functions

)'

c y:c

In this section we leam how to differentiate constant functions, power functions, polyno-
mials, and exponential functions.

Let's start with the simplest of all functions, the constant function f (.) : c. The graph
of this function is the horizontal line y : c, which has slope 0, so we must have f ,(x) : 0.
(see Figure 1.) A formal proof, from the definition of a derivative, is also easy:

f,(x) : r.^ f(x + 4) - f(x) : ü- ., t : limo : oå+o h h:õ h i,:ô "

In Leibniz notation, we write this rule as follows.

Derivative of a Gonstant Function

d... (c):o
clx

Power Functions
we next look at the functions f (*) :.r', where z is a positive integer. rf n : r, the graph
of /(x) : .r is the line y : x, which has slope 1. (See Figure 2.) So

d. (x):1
cllc

(You can also verify Equation 1 from the definition of a derivative.) We have already
investigated the cases n : 2 and n : 3.In fact, in Section 2.7 (Exercises 17 and lg) we
found that

d.^. d
* (x'): zx * (x'): lx'

For n:4 we find the derivative of .f (x): .r' as follows

x4 + 4x3h + 6x2h2 + 4xh3 I ha - xa

slope:0

FIGURE 1

The graph of fþc): c is the
line y: c, so /'(x) :0.

J:x
slope: 1

FIGURE 2
The graph of /(.r) : .r is the
line y: r, so f'(r) : 1.

0 x

v

0
x

: lim
¿+0

: lim
h+O

h

4x3h+6x2h2+4xh3+h4
h

Thus

: lytr(+r' + 6x2h * 4xhz * h3) : 4*z

I

2

3
d, (x*):4x'
ax
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Comparing the equations in (1), (2), and (3), we see a pattem emerging. It seems to be a
reasonable guess that, when r¿ is a positive integer, (dldx)(x") : nx"-t. This turns out to
be true.

In finding the derivative of xa we had to expand (x + h)a . Here we need to expand
(x * h)" and we use the Binomial Theorem to do so:

The Power Rule If n is a positive integer, then

d* (x"\ : nx"-l
d-x. '

PR00F lf/(x) : x", then

f'(x): ti^MP:,i--('J i)': ''r¡+o h n-o h

The Binomial Theorem is given on

Reference Page 1.

l- n(n - I) 
*u*zh2 +lx"*nx'-'h*-tT + nxh'-t + h" - x''

f'(x) :llry

: lim

h

. nh-l\
nXu-Ih * '-''' ', Xil-2hz + .

2
+ nxh"-I + h"

h

l- n,ln-t.)
I nXn-t + '-''' ', Xu-2h +l2: lim

h+O

We can rewrite this equation as

I nxh"-z + h'-I

l¡+0

: n¡n-l

because every term except the first has å as a factor and therefore approaches 0.

We illushate the Power Rule using various notations in Example 1.

EXAMPLEí Using the Power Rule

(a) If /(x) : x6, then f'(x) :6x5. (b) If y: rr000, theny' : 1000xeee

(c) rf y : /4, rhen #: or. (d) ¿ (f\ : jr2dr'
What about power functions with negative integer exponents? In Exercise 59 we ask

you to verify from the deûnition of a derivative that

d
dx

1

x
1

x'

and so the Power Rule is true when 1. In fact, we will show in the next section
[Exercise 60(c)] that it holds for all negative integers.
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Figure 3 shows the function y in Example 2(b)

and its derivative y'. Notice that y is not differ-
entÍable at 0 {y' ls not defined there). 0bserve

that y' is positive when y increases and is neg-

ative when y decreases.

2

*: *G/,') : fiG''') :!*tz/zt-r :l*-rrz

what if the exponent is a fraction? In Example 4 in section 2.7 we found that

,E: tã
which can be written as

(xr/2) : tx-t/2

This shows that the Power Rule is true even when n : I. l" fact, we will show in Sec-

tion 3.7 that it is true for all real numbers r¿.

The Power ßule (General Version) If n is any real nur¡iber, then

L (r'\: nxn-ldx'

EXAMPTE 2 The Power ßule for negative and fractional exponents Differentiate:
1(a).f(x):i @v:41'¿x-

SOLUTI0N In each case we rewrite the function as a power of x.

(a) Since f(x) : x-2,we use the Power Rule with n: -2:

d 1

dx,

d
dx. GEI

THI

M

dc

sl,

(b)
1

I
-J

FIGURE 3

v:<lx"

-1

-i
FIGUBE 4

v=xJx

The Power Rule enables us to find tangent lines without having to resort to the defi-
nition of a derivative. It also enables us to frnd normal lines.The normal line to a curve C
at a point P is the line through P that is perpendicular to the tangent line at P. (In the study
of optics, one needs to consider the angle between a light ray and the normal line to a lens.)

M gXnUtpU 3 Find equations of the tangent line and normal line to the curve ) : ,$
at the point (1, 1). Illustrate by graphing the curve and these lines.

SOLUTI0N The derivative of/(x) : *J| : xxllz : x3/2 is

f,(x) : ) ¡tz/zt-, : tr xl/2 : iJ;
So the slope of the tangent line at (1, 1) is/'(1) : |. Therefore an equation of the tan-
gent line is

y-l:'z@-t) or y:i*-à
The normal line is perpendicular to the tangent line, so its slope is the negative recipro-
cal of /, that is, -J. tnus an equation of the normal line is

y-1:-?(r-t) or y:-?*+tr
v/e graph the curve and its tangent line and normal line in Figure 4. J

J

3

v'
v

normal
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New Derivatives from Old
When new functions are formed from old functions by addition, subtraction, or multipli-
cation by a constant, their derivatives can be calculated in terms of derivatives of the old
functions. In particular, the following formula says that the derivative of a constant times
a function is the constant times the derivative of the function.

GEOMETRIC INTERPRETATION OF

THE CONSTANT MULTIPLE RULE
The constant Multiple Rule If c is a constant and f is a differentiable function, then

ftr'run:,fiv.t
y: t@) PR00F Let sQ) : c/(x). Then

v

y:2f (x)

x

lVlultiplying by c : 2 stretches the graph verti-
cally by a factor of 2. All the rises have been
doubled but the runs stay the same. So the
slopes are doubled, too.

Using prime notat¡on, we can write the
Sum Rule as

ç+ ò' :f' * s'

: limc
h+0

f(x + h) - f(x)
h

,. f(x + h) - f(x)
h+o h

: cf'(x)

EXAMPIE 4 Using the Constant Multiple Rule
d..d(^) * (zxo¡:3fi (xa) :3(4x3) : r2x3

@ *(-"): fiu-r)"1 : eD*("): -1(1): -l r
The next rule tells us that the derivative of a sum of functions is the sum of the

derivatives.

The Sum Rule If/and g are both differentiable, then

firra> + sl)t: ftrat *
d ,,-, g\x)
ax

PR00F Let F(x) : f(x) + 9(x). Then

:lim l.fG + h) + s(x + n)l-lf@)+s(x)l

(by Law 3 of limits)

¡¡+0 h

I fG * h) - f(x) sG + h) - s(x)
I h --- h

lim
hèA

_ r.^ f(x + 4) - f(x) * r.^s(x + h) - s(x)
h+o h i:õ h

(by Law l)

: f'(x) + g'(*)
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v

(A +¡

The Sum Rule can be extended to the sum of any number of functions. For instance,
using this theorem twice, we get

U+ s + h)' :lU+ s) + hf' : U+ ù' * h' :f' + s' + h'

By writing f - g as f + (-l)g and applying the Sum Rule and the Constant Multiple
Rule, we get the following formula.

The Difference Bule If/and g are both differentiable, then

4r¡a¡ - s¡)l : 4 ¡r.t - 4 nr¡dx clx ax

The Constant Multiple Rule, the Sum Rule, and the Difference Rule can be combined
with the Power Rule to differentiate any polynomial, as the following examples demonstrate.

EXAMPLE5 Differentiating a polynomial

d ,", * .t)ys - Ara + l0x3 - 6x + 5)
d* \n I L'^ -^

: ! (*'\ + r2!lx5) - +! (ro\ + rc!(x3) - ø!- r*l * i- rtld-x' dx' dx' dx': dx'' dx"
: 8¡7 + t2(5xa) - 4(4x3) + 10(3"r'z) * 6(1) + 0

:8x7 + 60xa - I6x3 + 30x2 - 6 :

I fXnUfU'6 Find the points on the curve ! : xa - 6x2 + 4 where the tangent line is
horizontal.

S0LUTI0N Horizontal tangents occur where the derivative is zero. We have

dvddd-i-: . (x')-6 . (x') + . (4)clx, tbc tlx clx

: 4x3 - l2x + 0: 4x(x2 - 3)

Thrrs dy/dx: 0 if x : 0 or x2 - 3 : 0, that is, x : *n6. So the given curve has
horizontal tangents when .r : 0, Jt, and - Ji. The corresponding points are (0, 4),
(Ji, -s), and(-J\, -s). lsee Figure 5.) x
EXAMPIET Theequationof motionof aparticle iss:2r3 - 5t2 + 3t + 4, wheresis

measured in centimeters and r in seconds. Find the acceleration as a function of time.
V/hat is the acceleration after 2 seconds?

S0LUTI0N The velocity and acceleration are

dsu(t): ¿t:6t' - l0r + 3

.dua(t): dt:12t-10
The acceleration after 2 s is a(2) : 14 cm/sz.

0 x

(-.Æ,-s) (.'Æ,-s)

FIGURE 5

The curve !: xa - 6x2 + 4 and
its horizontal tangents
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Exponential Functions
Let's try to compute the derivative of the exponential function f G) : ø' using the defini-
tion of a derivative:

f(x+h)-rG)IG) h+g h

a*ah - a': lim_: limh+o h h-o

Ar+h _ Ax==lim-l¡+o h
lim

a'(ah - I)
h

The factor a'doesn't depend on å, so we can take it in front of the limit:

h
2h-1

h
3h-l

h

0.1
0.01
0.001
0.0001

0.7177
0.6956
0.6934
0.6932

1.t612
1.1047
1.0992
1.0987

f'(r):"Æ+

ah-7
lim ____1_ : /,(0)h+o h

2h-lf'(0):lim -0.69h-o h

3h-1.f'(O):lim . :1.10
h-O h

Notice that the limit is the value of the derivative of / at 0, that is,

Therefore we have shown that if the exponential function f(*) : a'is differentiable at 0,
then it is differentiable everywhere and

f'(x):f'(o)a'
This equation says that the rate of change of any exponential function is proportional to
the function itself. (The slope is proportional to the height.)

Numerical evidence for the existence of /'(0) is given in the table at the left for the
cases a : 2 and a : 3. (Values are stated correct to four decimal places.) It appears that
the limits exist and

fora:2,

lora:3,

In fact, it can be proved that these limits exist and, correct to six decimal places, the val-
ues are

! o'tl : o.6%Ajdx ' ' l,:o

Thus, from Equation 4, we have

dl
-(3¡)l - 1.098612ùc' l,:o

fir,l: (0.6s)2" fio'l: (1.10)3'

Of all possible choices for the base ø in Equation 4, the simplest differentiation formula
occurs when/'(0) : 1.In view of the estimates of /'(0) for a:2atda: 3, it seemsrea-
sonable that there is a number a between 2 and 3 for which /(0) : 1. It is traditional to
denote this value by the letter e. (Infact, that is how we introduced ¿ in Section 1.5.) Thus
we have the following definition.

4

5
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ln Exercise 1 we will see lhat e lies between
2|7 and2.8. Later we will be able 1o show that,
correct to five decimal places,

e : 2;11828

Itr[l V¡sual 3.1 uses the slope-a-scope to
illustrate this formula.

-1.5

Delinition of the Number e

¿ is the number such that
et'-llim_:1,¡+0 h

Geometrically, this means that of all the possible exponential functions y: a', the
function f(*) : ¿'is the one whose tangent line at (0, 1) has a slope /'(0) that is exactly 1.

(See Figures 6 and 7 .)

v v
:3'v

_ 1.r
(", r' slope: e'

slope: 1

y: e,

J: E,

x

FIGURE 6 FIGIJRE 7

If we put a : e and, therefore, f '(0) : 1 in Equation 4, it becomes the following impor-
tant differentiation formula.

Derivative of the Natural Exponential Function

d--- (e') : e'
clx

Thus the exponential function f (*) : e'has the property that it is its own derivative.
The geometrical significance of this fact is that the slope of a tangent line to the curve
! : e'is equal to the y-coordinate of the point (see Figure 7).

0 0 x

3

[f exnnaeug If /(x) : e' - ¡, find f' and/". compare the graphs of f and f'
S0LUTI0N Using the Difference Rule, we have

f'(x): fro'- x): **', - *Ur: e' - |

In Section 2.7 we defined the second derivative as the derivative of /', so

f"(x): fic' - r) : *r, - fro: "
The function / and its derivative f ' are graphed in Figure 8. Notice that / has a horizon-
tal tangent when ¡ : 0; this coresponds to the fact that /'(0) : 0. Notice also that,
for-x ) 0, f'(x) is positive and / is increasing. When x < 0, f'(x) is negative and / is
decreasing. I

Í
Í'

FIGUBE 8

-1

1.5
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EXAMPTE 9 At what point on the curve ! : e'is the tangent line parallel to the
line y : /vt
S0LUTI0N Sincey: e',wehavey' : e'.Letthex-coordinateof thepointinquestion
be a. Then the slope of the tangent line at that point is ø'. This tangent line will be paral-
lel to the line y : 2x if it has the same slope, that is, 2. Equating slopes, we get

2

J:2x

v

0 Í.
en:2 >

Therefore the required point is (a, e') : (Ln2,2). (See Figure 9.) n
FIGURE 9

Exercises

l. (a) How is the number e defined?
(b) Use a calculator to estimate the values of the limits

2.7h-l 2.9t',-7
lim 

- 

and lim 

-

¡¡+o þ n-o h

correct to two decimal places. What can you conclude
about the value of ¿?

2. (a) Sketch, by hand, the graph ofthe function f(x): e',pay-
ing particular attention to how the graph crosses the y-axis
What fact allows you to do this?

(b) What types of functions are f (x) : e' and g(x) : a"t
Compare the differentiation formulas for f and g.

(c) Which of the two functions in part (b) grows more rapidly
when x is large?

27-28 Find an equation ofthe tangent line to the curve at the given
point.

zt. y: 4,8, (1, 1) 28. y: xo + 2x' - x, (1,2)

29-30 Find equations of the tangent line and normal line to the
curve a[ the given point.

29. y: xa + 2e" (0,2) 30. y : (l + 2x)2, (1,9)

ffi ft-fZ Find an equation of the tangent line to the curve at the given
point. Illustrate by graphing the curve and the tangent line on the
same screen.

3f. y : 3x2 * x3, (1,2) 32. y: , - Jr, (1,0)

ffi rr-ro Find /'(x). Compare the graphs of / and /' and use them to
explain why your answer is reasonable.

33. /(x) : e' - 5x 3a. f(x):3xs - 20x3 + 50x

35. /(x) :3x's - 5x3 +3 36./(x) :*+L

ffi fZ-m Esdmate the value of f ' (a) by zooming in on the graph of /
Then differenttate f to find the exact value of f'(a) and compare
with your estimate.

37. f(x):3x2-x3, a:l 38./(x):11.1Ç, a:4

23. u: ,ß + qJtt

25. z:4 * ur,

24, o:
26. Y: e'*t + L

(t.*)'

r-

VE
j'

.i

i',!

ìt
:i',:

rþ
rir,

3-26 Differentiate the function.

3. /(.r) : 186.5

s.f(ù--2-trt
1.f(*): x3 - 4x + 6

s./G):å(ro+8)
121l.A(s) :-",

13. s(t) :2f3/4
4

15. y= 3e'+ $
17. F(x): (år'

x2+4x+319.v:_-T
21. y:4rz

t.f(Ð: Jn
6. F(x):lx9
8. /(r) : |tu - 3to + t

10. h(x): (x - 2)(2x + 3)

12. B(y): cy-6

14.h(t):ú*4"'
i6.y:$G-t)

x2-3x+l
18. /(x) :

20. s(u): $" + Jn
bc22,Y:aeut-*-t

)n-

ffi ffi Graphing calculator or computer with graphing software required l. Homework Hints available in TEC
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EE ¡s. (a) Use a graphing calculator or computer to graph the func-
tion /(x) : x4 - 3x3 - 6x2 * 7x r 30 in the viewing
rectangle [-3, 5] by [- 10, 50].

(b) Using the graph in part (a) to estimate slopes, make
a rough sketch, by hand, of the graph of /'. (See
Example 1 in Section 2.7.)

(c) Calculate /'(x) and use this expression, with a graphing
device, to graph f ' . Compare with your sketch in part (b).

EE CO. (u) Use a graphing calculator or computer to graph the func-
tion g(x) : e' - 3¡2 in the viewing rectangle [- 1' 4]
bv [-8, 8].

(b) Using the graph in part (a) to estimate slopes, make
a rough sketch, by hand, of the graph of g'. (See
Example I in Section 2.7.)

(c) Calculate g'(x) and use this expression, with a graphing
device, to graph g'. Compare with your sketch in part (b).

41-42 Find the first and second derivatives of the function.

aL f(x): loxro * 5x5 - x 4í2. G(r):,F + ^F

ffi lf-ac Find the first and second derivatives of the function.
Check to see that your answers are reasonable by comparing the
graphs of/, f', and f".
a3. f(x) :2x - 5x3/a . aa. f(x): e' - x3

I
ffi SS. At what point on the curve y : I + 2e' - 3x is the tangent

line parallel to the line 3x - y :5? Illustrate by graphing
the curve and both lines.

55. Find an equation ofthe normal line to the parabola
! : x2 - 5x * 4that is parallel to the line x * 3y : 5.

56. Where does the normal line to the parabola y : x - x2 atthe
point (1, 0) intersect the parabola a second time? Illustrate
with a sketch.

57, Draw a diagram to show that there are two tangent lines to
the parabola y : x2 thatpass through the point (0, -a). Find
the coordinates of the points where these tangent lines inter-
sect the parabola.

58. (a) Find equations ofboth lines through the point (2, -3)
that are tangent to the parabola y : x2 + x.

(b) Show that there is no line through the point (2, 7) that is
tangent to the parabola. Then draw a diagram to see why.

59. Use the definition of a derivative to show thatif f (x) : 1/x,
then /'(.x) : -l/xt. (This proves the Power Rule for the
casen: -1.)

60. Find the nth derivative ofeach function by calculating the
ûrst few derivatives and observing the pattern that occurs.
(a) f(x): x' (b) f(x): l/x

61. Find a second-degree polynomial P such that P(2) : 5,
P'(2) : 3, and P"(2) : 2.

62. The equation y" + y' - 2y : x2 is called a differential
equation because it involves an unknown function y and its
Ìlerivatives y' and y" . Find constants A, B, and C such that the
function ! : Ax2 i Bx I C satisfies this equation. (Differ-
ential equations will be studied in detail in Chapter 7.)

63. (a) In Section 2.8 we defined an antiderivative of/ to be a
function F such that F': f. Try to guess a formula for an
antiderivative of /("r) : x2. Then check your answer by
differentiating it. How many antiderivatives does f have'Ì

(b) Find antiderivatives for /(x) : x3 and f(r) : xo.
(c) Find an antiderivative for /(x) : x", where n * -1.

Check by differentiation.

64. Use the result of Exercise 63(c) to find an antiderivative of
each function.
(a) f (ò: Ji (u) "f(x) : e' * 8x3

65. Find the parabola with equation ! : ax2 * å,r whose tangent
line at (1, 1) has equation y:3x - 2.

66. Supposethecurve !: x4 + ax3 + bx2 * cx I dhasatan-
gent line when¡ : 0 with equation y : 2x * I and a
tangentlinewhen¡: l with equation y:2 - 3x. Findthe
values of a, b, c, and d.

67. Find acubicfunctioû!: ax3 * bx2 * cx I d whosegraph
has horizontal tangents at the points (-2,6) and (2, 0).

68, Find the value of c such that the line y : 31x + 6 is tangent to
thecurvey:cJx.

69. For what values of ¿ and å is the line 2x * y : b tangent to
the parabola ! : ax2 when x:2?

05.

46.

ffi

41.

48.

49.

50.

51.

52.

53.

The equation of motion of a particle is s : t3 - 31, where s
is in meters and r is in seconds. Find
(a) the velocity and acceleration as functions of ¡,
(b) the acceleration after 2 s, and
(c) the acceleration when the velocity is 0.

The equation of motion of a particle is
s : f - 2t3 + t2 - t, where s is in meters and ris in
seconds.
(a) Find the velocity and acceleration as functions of /.
(b) Find the acceleration after 1 s.
(c) Graph the position, velocity, and acceleration functions

on the same screen.

On what interval is the function f(x) : 5x - e' increasing?

On what interval is the function f Ø : x3 - 4xz + 5x
concave upward?

Find the points on the curve ! : 2x3 * 3x2 - 12x * |
where the tangent is horizontal.

For what values of,r does the graph of
f(r) : x3 + 3x2 * x * 3have a horizontal tangent?

Show that the curve ! : 6x3 * 5¡ - 3 has no tangent line
with slope 4.

Find an equation of the tangent line to the curve l, : *tE
that is parallel to the line y : I + 3x.

Find equations of both lines that are tangent to the curve
y : 1 + x3 and parallel to the line 12x - y : 1.
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-- 1000 1

^ -r
71. Evaluate lim ,x.-t I - I

70. A tangent line is drawn to the hyperbola xy : c at a point P.
(a) Show that the midpoint of the line segment cut from this

tangent line by the coordinate axes is P.
(b) Show that the triangle formed by the tangent line and the

coordinate axes always has the same area, no matter
where P is located on the hyperbola.

72. Draw a diagram showing two perpendicular lines that inter'-
sect on the y-axis and are both tangent to the parabola
! : x2. Where do these lines intersect?

ß. If c > j, how many lines through the point (0, c) are normal
lines to the parabola y : x2? What if c < j?

74. Sketch theparabolas !: x2 and!: x2 - 2x-l 2. Do you
think there is a line that is tangent to both curves? lf so, find
its equation. If not, why not?

Building a Better Roller Goaster

Suppose you are asked to design the lìrst ascent and drop fol a new roller coaster. By studying
photographs of your favorite coasters, you decide to make the slope of the ascent 0.8 and the slope
of the drop - 1.6. You decide to connect these two straight stretches y : Lr(¡) and y : L2(x) with
partofaparabolay:f(x):ax2+bx*c,where¡and/(x)atemeasuredinfeet.Forthetrack
to be snrooth there can't be abrupt changes in direction, so you want the lineal segments Lt and Lz
to be tangent to the parabola at the transition points P and Q. (See the figure.) To simplify the
equations, you decide to place the origin at P.

1. (a) Suppose the horizontal distance between P and Q is 100 ft. Write equations in a, å,' 
and c that will ensule that the track is smooth at the transition points.

(b) Solve the equations in part (a) for a,b, and c to lìnd a formula for /(x).
ffi (c) Plot L¡ f, andl2 to verify graphically that the tlansitions are smooth.

(d) Find the diftèrence in elevation between P aw) Q.

2. The sohltion in Problem I rnight iook smooth, but it might not.feel smooth because the
piecewise defined firnction [consisting of t¡(¡) for ¡ ( 0, /(x) for 0 < x ¤ 100, and
l2(.r) for.r > l00j doesn't have a continuous second derivative. So you decide to implove
the design by using a quadratic function rl!) : ax2 * bx * c oniy on the interval
l0 < ,v < 90 and connecting it to the linear functions by rneans of two cubic functions:

g(x): kx3 * lx2 * mxi n 0<x< 10

h(x):px3 * c1x2 * rx* s 90<x< 100

(a) Write a system of equations in 11 unknowns that ensure that the tlnctions and their
first two derivatives agree at the transition points.

iq¡ö] (b) Solve the equations in part (a) with a computer algebra system to fìnd formulas for
. aG), s(x), and h(x).
(c) Plot l¡, g, e¡, h, and Lz, 

^nd 
cornpare with the plot in Problem l(c).

ffi Graphing calculator or colnputer with graphing software required

lõÃdl conlput"r algebra system required

W

The Product and 0uotient Rules

The formulas of this section enable us to differentiate new functions formed from old func-
tions by multiplication or division.

The Product Rule
Ø SV analogy with the Sum and Difference Rules, one might be tempted to guess, as Leibniz

did three centuries ago, that the derivative of a product is the product ofthe derivatives. Vy'e

can see, however, that this guess is wrong by looking at a particular example. Let f(x) : x
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TIGURE 1

The geometry of the Product Rule

Recall that in Leibnìz notation the definition of
a derivative can be written as

dr:
drc

ln prime notation:

Uò':Ís' + sf'

L,fut¡\ La A,u L,a
--r-----:-: u--:- * u--:- I au .Ax L,x L,x Ax

and g(x): x'. Then the Power Rule gives f '(x) : I and g'(x) : 2x'Bttt UùG) : 13, so

US)'G) :3x2. Thus (/g)' # f'g'. The corect formula was discovered by Leibniz (soon
after his false start) and is called the Product Rule.

Before stating the Product Rule, let's see how we might discover it. We start by assum-
ing that u : Í(x) aîd D : g(x) are both positive differentiable functions. Then we can
interpret the product ua as an area of a rectangle (see Figure 1). Ifx changes by an amount
Ax, then the corresponding changes in u and u are

tu: f(x + Lx) - f(x) Lu: sG + Ax) - e(x)

and the new value of the product, (u * L,u)(a + Au), can be interpreted as the area of the
large rectangle in Figure 1 (provided fhat Lu and La happen to be positive).

The change in the area of the rectangle is

A,(uu) : (u + Lu)(u + Aa) - ua : u Lu * a Lu * Lu La

: the sum ofthe three shaded areas

If we divide by Ax, we get

u

u

If we now let Ax --+ 0, we get the derivative of øu:

lim
À¡+0

Ay
Li

d A,(uu):(ua\: lim +: limùc ' ' A¡-0 AX A¡+0 ("*+"#.o,#)
Lulim --A¡-o Â.X

Lo:¿¿lim. *a¡¡-o A-f
. (;i*^,)(***)

du du da+t)-+0.-dx dx dx.

ddadu--luu):u--*a 'd^x tlx dx

(Notice that Aø --> 0 as Ax -> 0 since / is differentiable and therefore continuous.)
Although we started by assuming (for the geometric interpretation) that all the quanti-

ties are positive, we notice that Equation I is always true. (The algebra is valid whether ø,

u, L.u, and La are positive or negative.) So we have proved Equation 2, known as the
Product Rule, for all differentiable functions u and u.

The Product Rule If f and g are both differentiable, then

firtr.tnr,ll :/(') firnø + s@)frrtan

In words, the Product Rule says that the derívative of ø product of two functions is the

first function times the derivative of the second function plus the second function times the
derivative of the first function.

I

2



Figure 2 shows the graphs of the function /
of Example 1 and its derivative /'. Notice that

f,(¡) is positive when / is increasing and nega-

i¡ve when / ìs decreasing.
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'ËüMPLE t Using the Product Rule
(a) If /(x) : xê', find/'(x).
(b) Find the nth derivative, /(")(x)
SOLUTION
(a) By the Product Rule, we have

d.f'(x): . (xe')
clx

dd: )c , le") * e'--(x)clx cbc

: xe" * e,.I: (x * I)e,

(b) Using the Product Rule a second time, we get

f'(x): *rO + r)e'f
.dd:(x*1) , (e')*e' . (x+l)&x ctx

: (x + I)e' * e*. I : (x * 2)e'

Further applications of the Product Rule give

f "'(*): (x+ 3)e' f@)Q): Q* 4)e"

In fact, each successive differentiation adds another term e¡, so

f@)(r): (x * n)e"

EXAMPTE 2 Differentiating a function with arbitrary constants
Differentiate the function/(t) : ,E @ + bt).

S0LUTI0N 1 Using the Product Rule, we have

f'(t):6 *@ + bt) + (ø + bù*çE)
: ^î .b + (a + bt).)¡-r/z

:ø"ft + a*bt aI3bt

-:-
2Jt 2Jt

SOLUTI0N 2 If we first use the laws of exponents to rewrite /(t), then we can proceed
directly without using the Product Rule.

f(ù : a'ß + urF : o¡t/z ¡ 6¡z/z

f'(t):ior-'t"+)bt1/2
which is equivalent to the answer given in Solution 1. I

Example 2 shows that it is sometimes easier to simplify a product of functions before
differentiating than to use the Product Rule. In Example 1, however, the Product Rule is
the only possible method.

3

-3 1.5

-1
FIGURE 2

ln Example 2, a and b are constants. lt is
customary in mathematics to use letters near
the beginning of the alphabet to represent con-
stants and letters near the end of the alphabet
to represent variables.

r
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EXAMPIE3 If f(x): $ sO),wheres(4):2ands,@):3,find f,(4).
S0LUTI0N Applying the Product Rule, we get

r'(x) : *tl, sl)l: G *LsG)t + 
^ù*tJ;l: $ s'(r) + se).i, "" a(x\,," : tf)c n,çx¡ + ffi

so f,(4) : Ja s,(a) . #: 2.3 * fi: u., r
M ¡xnmpfe d lnterpreting the terms in the Product Rule A telephone company wants to
estimate the number of new residential phone lines that it will need to insiall ãuring the
upcoming month. At the beginning of January the company had 100,000 subscribeis,
each of whom had 1.2 phone lines, on average. The compãny estimated that its sub_
scribership was increasing at the rate of 1000 monthly. ny ptiling its existing sub_
scribers, the company found that each intended to insiall ãn uu"tJg" of0.0l new phone
lines by the end of January. Estimate the number of new lines the company will have toinstall in January by calculating the rate ofincrease oflines at the beginning ofthe
month.

sOLUTl0N Let s(r) be the number of subscribers and let n(t) be the number of phone linesper subscriber at time /, where / is measured in months and r : 0 corresponds to the
beginning of January. Then the total number of lines is given by

L(t) : s(t)n(t)

and we want to find t'(0). According to the product Rule, we have

L,(t) : fif,al"f,Sl: fù * n(t) + n(t) * ,U,

'We are given that s(0) : 100,000 and n(0) : 1.2. The company,s estimares concerning
rates of increase are that s'(0) - 1000 and n,(0) - 0.01. Therefoie

¿(0) : s(0)n,(0) + n(0)s'(0)

- 100,000. 0.01 + 1.2 . 1000 :2200
The company will need to install approximately 2200 new phone lines in January.

Notice that the two terms arising from the Product Rule õome from different sources-old subscribers and new subscribers. One contribution to Z' is the number of existing sub-
scribers (100,000) times the rate at which they order new lines (about 0.01 per subscribermonthly)' A second contribution is the average number of lines per s:rbscribe r (7.2 at the
beginning of the month) times the rate of increase of subscriben If OOO monthly). r
The Ouotient Rule
V/e find a rule for differentiating the quotient of two differentiable functions u : f (x) and
u : sG) in much the same way that we found the product Rule. If x, u, andu change by
amounts ax, L,u, and aa, then the corresponding change in the quotient uf u is

^(+)
u* Au u (u + Au)u - u(u + A,u) u\u - u!,a
u*A,a 1) u(a + Lu) u(u + Au)
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SO L,u L¡t
' L*- " L,

u(u + A.u)

As A;-+0, A¿->0 also, because u : S@) is differentiable and therefore continuous. Thus,
using the Limit Laws, we get

d
dx

lo\ : n^ !y-/ù-: rm
\, / ar+o Âx &+o

*(Ð:

,. L,u ,. Lu du du¿lrm--ulrm-¡¡*o Ax ar+o [¡ dx dx
ø lim (u + Àø) u'

ln prime notation:

The Ouotient Rule If / and g are differentiable, then

¿ I r¡tl
d-L^ù l:

t@*t/(¡)l - x.tfirørat
ls@)l'

In words, the Quotient Rule says that the derivative of a quotient ís the denominator
times the derivative of the numerøtor minus the numerøtor times the derivative of the
denominatot all divided by the square of the denominaton

The Quotient Rule and the other differentiation formulas enable us to compute the
derivative of any rational function, as the next example illustrates.

x2+x-2
I rxnurU 5 Using the Ouotient Rule Let y : il,l;:. ffren

(x3 + 6) *ro + x - 2) - (*' + x - z)ftfs * ul

(x3 + 6)2

(x3 + 6)(2x+ 1) - (x2 + x - 2)(3x2)
(x3 + 6)"

(Zxa + x3 + lzx+ 6) - (3x4 + 3x3 - 6xz)
(x3 + 6)2

-x4-2x3+6x2*l2x*6
(x3 + 6)2

r

[f rxnnnem 6 Find an equation of the tangent line to the curve y : e'/(I * x2) at the
point ( l, je).

S0LUTI0N According to the Quotient Rule, we have

L sf' - fs'
gtg

We can use a graphing device to check that
the answer to Example 5 is plausible. Figure 3

shows the graphs of the function of Example 5

and its derivative. Notice that when y grows
rapidly {near -2), y' is large. And when y
grows slowly. y' is near 0.

1.5

-1.5
FIGURE 3

v

4*4

dy
dx (L + x2)2

(l + x2)e" - e"(2x) e'(I - x)2

v'

v

(t + x2)2 (r + x2)2
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2.5 So the slope of the tangent line at (1, je) is
e'v.=TT;'

y:+,

FIGUBE 4

dvl
drl,: :0

3.5

This means thar the tangent line at (t, ir) is horizontal and its equation is y.:.ie. [See
Figure 4. Notice that the function is increasing and crosses its tangent line at (1, le)'l

I

Note: Don't use the Quotient Ftule every time you see a quotient. Sometimes it's eas-

ier to rewrite a quotient f,rst to put it in a form that is simpler for the purpose of differen-
tiation. For instance, although it is possible to differentiate the function

lx2 + z$. tr/ :

using the Quotient Rule, it is much easier to perform the division first and write the func-
tion as

F(x) :3x * 2x-t/2

before Íiffiîl;iî'" differenriarion formulas we have leamed so far as follows.

0

Table of Differentiation Formulas !-ut:o
dx"

! (r'\ : nxn-ldx'
d
, (e'):

dx
e x

(cf)' : ,f' U+ ù':f' * g' U- ù':f' - g'

(fù' :fs' + sf' (*)' : sf' - fs'
92

Exercises

1. Find the derivative of/(¡) : (l + 2x2)(x - x2) in two ways:
by using the Product Rule and by performing the multiplication
first. Do your answers agree?

2. Find the derivative ofthe function

r(x): x4 - sxl+ $
)c2

in two ways: by using the Quotient Rule and by simplifying
first. Show that your answers are equivalent. Which method do
you prefer?

3-24 Differentiate.

t. f(x): (x3 + 2x)e' 4' s(ù: ^E e'

e'5.y: 
"x-
3-x-l

7. g(x): 2, + l
/ ^\

e. F(y):(+- j-)iy+sy'r\v' v /
10. R(r) : (t + e')(t - .,ß)

x'
11. v:'-----------'=' 1-x'

t2+2
13. v: --_-=:--" t"-3t'+1

et
6. v:-' 7*x

.2t8."f(r):4+t,

x*1
12' v : --ì- ,--- ^x--fx-¿

ffi Graphing calculatof or computer with graphing software required 1. Homework Hints available in TEC

14. v: -:--------=' u-rr



15.y:(r2-2r)e'

a3 - 2atñ
11. v: ,

2tls.f(ù: ^ , r¿ -r lt

A21.f@): B+c¿

I
16. v:' slke'
18.2:*z/2(¡1t*ce')

. t-,[120.sØ-- trß-
1-xe'

22. f(x\ : -------------:-xle^

2s. f(x): -+ ax*b
24. f(x\ cx*rl
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31. (a) If f(x) : (r' - t)lîz + 1), find /'(x) and f"(x).
ffi (b) Check to see that your answers to part (a) are reasonable

by comparing the graphs of f, f' , and f" .

3s. (a) If/(x) : (x' - 1)e', find f'(x) and f"(x).
ffi @) Check to see that your answers to part (a) are reasonable

by comparing the graphs of f, f', and f".
39. If /(x) : x'/(l + .r), find /"(1).

40. If 9(.x) : x/e',find9(")(x).

41. Suppose that /(5) : l, f '(5) : 6, s(5) : -3, and s'6) : 2.
Find the following values.
(a) (fù'(s) (b) (f/s)'(s)
(c) (s/f)'(s)

42. Suppose thatf (2) : -3, sQ) : 4, f '(2) : -2, and
s' (2) : 7 . Find h' (2).
(a) h(x) : sf(x) - as?) þ) h(x): f(x)s?)

x+-x

25-28 Find/'( x) and f " (x)

25. f(x): xae'

x'27.f(x): r+2x

26. f(x): xsl2ex

28. f(x): -+=x-- I

29-30 Find an equation of the tangent line to the given curve at
the specified point.

2x er
2e. y: ä, (1, l) 30. y :;, (1, e)

a3. If /(x) : e'g(x), where 9(0) : 2 and S'@) : 5, find /'(0).

44. If h(2): 4 and h'(2) : -3, find

f(x\(c) h(x): *g\x)

*(ry)| ,

31-32 Find equations of the tangent line and normal line to the
given curve at the specified point.

45. If / and g are the functions whose graphs are shown, let
uG) : f Q)s(x) and a(x) : f (ò/sG).
(a) Find ¿'(1). (b) Find ø'(5).

31. y:2*"', (0,0) (4,0.4)

33. (a) The curve ) : ll0 +.r2) is called a witch of Maria
Agnesi. Find an equation of the tangent line to this curve
at the point (- t, å).

ffi þ) Illustrate part (a) by graphing the curve and the tangent
line on the same screen.

34. (a) The curve y : x/(l + x2) is called a serpentine. Find
an equation of the tangent line to this curve at the point
(3, 0.3).

(b) Illustrate part (a) by graphing the curve and the tangent
line on the same screen.

ffi
35, (a) If/(x) : (x' - x)e',frnd f'(x).

(b) Check to see that your answer to part (a) is reasonable by
comparing the graphs of f and f'.

36. (a) Ifl(x) : er/(2x2 + x + 1), find /'(x).
(b) Check to see that your answer to part (a) is reasonable by

comparing the graphs of f and f '.

46. Let P(x) : F(.r)c(x) and QQ) : F(x)/G(x), where F and G
are the functions whose graphs are shown.
(a) Find P'(2). (b) Find 0'(7).

,E32. v:' x-|'l'

l

r

/¡
\ s

I

0 1 )

F

G-1

0 1 .t

H

H
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41. lf g is a differentiable function, ûnd an expression for the
derivative of each of the following functions.

(a) y: xs(x) (u) Y: * n, ,: *s\x)
48. If f is a differentiable function, tnd an expression for the

derivative of each of the following functions.

f(x)
(a) y: x'zf(x) (ø) v: î

x' 1 + xf(x)(c)y: ^ (d)y:-----r-
J\x) lx

49. In this exercise we estimate the rate at which the total personal
income is rising in the Richmond-Petersburg, Virginia, metro-
politan area. In 1999, the population of this area was 961'400'
and the population was increasing at roughly 9200 people per
year. The average annual income was $30,593 per capita, and
this average was increasing at about $1400 per year (a little
above the national average of about $1225 yearly). Use the
Product Rule and these figures to estimate the rate at which
total personal income was rising in the Richmond-Petersburg
area in 1999. Explain the meaning of each term in the Product
Rule.

5{1. A manufacturer produces bolts of a fabric with a fixed width.
The quantity q of this fabric (measured in yards) that is sold is
a function of the selling price p (in dollars per yard)' so we can
write q: f(p). Then the total revenue earned with selling price
p is rR(p) : Pf(P).
(a) What does it mean to say that f (20) : 10,000 and

f '(20) : -3s0?
(b) Assuming the values in part (a), ûnd R'(20) and interpret

your answer.

51. On what interval is the function f (x) : x3e'increasing?

52. On what interval is the function f(x) : x2e' concave
downward?

53. How many tangent lines to the curve y : xl| * 1) pass

through the point (L,2)? At which points do these tangent lines
touch the cu¡ve?

54. Find equations of the tangent lines to the curve

x- 7Y: x+l
that are parallel to the line x * 2Y : 2.

55. Find R'(0), where

R(x): x--3x3+-5xs -1*3x3+6x6+9xe

Hint: Instead of finding R'(.x) flrst, let/(x) be the numerator
and 9(x) the denominator of R(x) and compute R'(0) from/(0)'

"f'(0), s(0), and e'(0).

56. Use the method of Exercise 55 to compute O'(0), where

eG):1+x+x|+xe'__l-xJ_)t2-xe'

57. (a) Use the Product Rule twice to prove that if /, g, and h ate
differentiable, then (fgh)' : f'gh + fg'h + fgh' .

(b) Taking f: S : h in Part (a), show that

d- -
fr lt t'¡1' : 3l.f (x)1'z f ' (x)

(c) Use part (b) to differentiate y : e3'.

5S. (a) If F(¡) : f (x)SQ), where / and g have derivatives of all
orders, show that F" : f"g * zf'g' + fg".

(b) Find similar formulas for F"' and F(a)'
(c) Guess a formula for F(').

59. Find expressions for the trst flve derivatives of /(¡) : x2e'.
Do you see a pattern in these expressions? Guess a formula for
.f(")(.r) and prove it using mathematical induction.

60. (a) If g is differentiable, the Reciprocal Rule says that

dl1I s'(')
d,l1') ): -ls¡)y

Use the Quotient Rule to prove the Reciprocal Rule.
(b) Use the Reciprocal Rule to differentiate the function in

Exercise 16.
(c) Use the Reciprocal Rule to verify that the Power Rule is

valid for negâtive integers, that is,

d

¡
0

(*-') : -nx-u-1dx

for all positive integers n.

Derivatives of Tligonometric Functions

A review of the trigonometric functions is given

in Appendix C.

Before starting this section, you might need to review the trigonometric functions. In par-

ticular, it is important to remember that when we talk about the function / defined for all
real numbers "r bY

f(x) : sin ¡
it is understood that sin r means the sine of the angle whose radian measure is x. A simi-
lar convention holds for the other trigonometric functions cos, tan, csc, sec, and cot. Recall



4,¡. Find constants A and.B such that the function
y : ,4 sin ¡ * B cos ¡ satisfies the differential equation
y" + y' - 2y: sinx.

42. (a) Use the substitution 0 : 5x to evaluate

sin -5xl':¡ ,
(b) Use part (a) and the definition of a derivative to find

d,.
dr (sln )x/
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cream cone, as shown in the figure. IfA(0) is the area of the
semicircle and B(0) is the area of the triangle, find

.. A(0\lrmo-o+ B(0)

0

l0 cm 10 cm

P

{3-45 Use Formula 2 and trigonometric identities to evaluate the
limit.

tan 6t sin 3.r sin 5x
43. lim 

- 
44. lim ;

¡ -0 Slrì Zf .r..0 x"

sin 0
45. lim .o-o 0 + tan0

46. (a) Evaluate lim x sin 1
x+6 X

(b) Evaluate lim x sin 1.
r+0 X

ffi (c) Illustrate parts (a) and (b) by graphing y : .r sin(l/-r).

47. Differentiate each trigonometric identity to obtain a new
(or familiar) identity.
. sin¡ 1(a) tan -r (b) sec

cos f cos .r

(c)sinx*cosx- 1 *cotx
csc .r

48. A semicircle with diameter PQ sits on an isosceles triangle
PQR to form a region shaped like a two-dimensional ice-

R

49. The flgure shows a circular arc of length s and a chord of
length d, both subtended by a central angle d. Find

s;lim
0+0+

s

3S
ffi so. retl(-r): x

I - cos2¡
(a) Graphl What type of discontinuity does it appear to

have at 0?
(b) Calculate the left and right limits of/at 0. Do these

values confirm your answer to part (a)?
f

The Chain Rule

Snppose you are asked to differentiate the function

F(*): "'æ + t
The differentiation formulas you learned in the previous sections of this chapter do not
enable you to calculate F'(x).

Observe that F is a composite function. In fact, if we let y : f(u) : Ju and let
u : SG) : x' + 1, then we can write y : F(") : fþGÐ,thar is, F : f"9. We know
how to differentiate both / and g, so it would be useful to have a rule that tells us how to
find the derivative of F : f " g in terms of the derivatives of / and g.

It turns out that the derivative of the composite function f " g is the product of the deriv-
atives of / and g. This fact is one of the most important of the differentiation rules and is

See Section 1.3 for a review of
composite functions.
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James Gregory

The first person t0 formulate the Chain Rule

was the Scottish mathematician James Gregory
(1 638-1 675), who also designed the fìrst practi-
cal reflecting telescope. Gregory discovered the
basic ideas of calculus at about the same time
as Newton. He became the first Professor of
Mathematics at the University of St. Andrews
and later held the same position at the Univer-

sity of Edinburgh. But one year after accepting
that position he died at the age of 36.

called the Chain Rule. lf seems plausible if we interpret derivatives as rates of change.

Regard duf d.x as the rate of change of ø with respect to x, dyf du as the rate of change of
y with respsct to u, and dy/dx as the rate of change of y with respect to ¡. If ø changes

twice as fast as x a¡d y changes three times as fast as ø, then it seems reasonable that y
changes six times as fast as ,r, and so we expect that

The Chain ßule If g is differentiable at .x and / is differentiable at g(x), then the
composite function F: f " 9 deûned by F(x) : fGGÐ is differentiable atx and
F' is given by the product

F'(*) : f'@(ù)' s'U)

In Leibniz notation, if y : f (u) and u : g(x) are both differentiable functions, fhen

dy _dy du
d"x du dx

C0MMENTS 0N THE pR00F 0F THE CHAIN RULE Let aø be the change in ø corresponding to
a change of Àx in x, that is,

L,u: g(x + Ar) - g(x)

Then the corresponding change in y is

Ly:Í(u+ L'u)-f(u)
It is tempting to write

dy :dy du
dx du dx

dv .. av
-:llm---dx ¿¡-o Af

Av L,ulim -:.¡,x-o L,U AX

Àv: lim -:16x-o Lu

Av: lim -:a
L,u+o [,¡1

Lulim --¡¡-0 Â.Í

L.u.lim-
¿¡*o Ax

(Note that À¿r + 0 as A¡ + 0
since g ìs continuous.)

_dy du
du dx

The only flaw in this reasoning is that in (l) it might happen thalt Lu: 0 (even when
L,x * 0) and, of course, we can't divide by 0. Nonetheless, this reasoning does at least

suggest that the Chain Rule is true. A full proof of the Chain Rule is given at the end of
this section.

The Chain Rule can be written either in the prime notation

1

2 U" ù'(r) : f'GQ)) 's'G)
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or, if y : f (r) and u : g(x), in Leibniz notation

dy dy du
dx du dx

Equation 3 is easy to remember because if dy/du and duf dx were quotients, then we could
cancel du. Remember, however, that du has not been defined and dufdx should not be
thought of as an actual quotient.

EXAMPTE I Using the Chain Rule Find F'(x) if F'(x) :
S0LUTI0N 1 (using Equation 2): At the beginning of this section we expressed F as
F(x) : (f " ù(*) : fGQÐ where/(ø) : Ju and sG) : x2 + 1. Since

x2+I

f '(u)

frurction

d
dx

frnctiorl

and g'(x) : 2x

@(*)) s'G)

I -th:1u ''|- : 1

2t/u

we have F'(x) : f'Q(x)) ' s'@)

- 1 ..-: x
2Jx2tI -" Jx2+l

SOLUII0N 2 (using Equation 3): If we let u: x'* 1 and y : $,then
dvdu I t x

F t*l : --:---:- : -:---- tZ.tt : -:---tZ^, : ---du dx 2t/u ' 2.1/x2 * I' t/xz * |

dv )c_:_ : Ftt -\dx t/x2 * I

E
When using Formula 3 we should bear in mind that dyfdx rcfers to the derivative of

y when y is considered as a function of x (called fhe derivative of y with respect to x),
whereas dyfdureferc to the derivative ofy when considered as a function of u (the deriv-
ative of y with respect to ø). For instance, in Example 1, y can be considered as a function
of r (y : J-x' + t) and also as a function of u(y : J;). Note that

whereas

Note: In using the Chain Rule we work from the outside to the inside. Formula 2 says
that we dffirentiate the outer functíon f lat the inner function g(x)l and then we muhiply
by the derivative of the inner function.

d
dx f G@))

evalu¿ìted
at inncr
1ìr nction

f'
clcrivative
ol outer
functi on

cvrhratcd
at inncr
lìrnctiorÌ

derivâtive
of inncr
function

outcf

I fXnfVlflf 2 Differentiate (a) y : sin(x2) and (b) ) : sin2x.

SÛLUTION
(a) If y : sin(x'), then the outer function is the sine function and the inner function is
the squaring function, so the Chain Rule gives

dy
dx

cos (*')sin (*') 2x

derivâtive
of outcr
I'rurctiori

evaluatcd
at i¡rner
functi orl

outer

a

: 2x cos(xz)

cvahrate(l
at inncr
lincl icÌr

dc¡ivativc
ol inner
lunct¡on



2(lO CHAPTER 3 DIFFEBENTIATION BULES

See Reference Page 2 or Appendix C.

dx

(b) Note that sin2¡ : (sin x)2. Here the outer function is the squaring function and the
inner function is the sine function. So

dy d (sin x)2

inner
function

dx
2 (sin x)

evaluated
at inuer
frìnction

cos .x

derivâtivc
of inner
function

derivative
of outer
lunction

The answer can be left as 2 sin r cos r or written as sin 2.r (by a trigonometric identity
known as the double-angle formula). I

In Example 2(a) we combined the Chain Rule with the rule for differentiating the sine
function. In general, if y : tin r, where ø is a differentiable function of x, then, by the
Chain Rule,

dy _ dy du : 
"n"ududx du dx dx

Thus frøt"r): "orufr
In a similar fashion, all of the formulas for differentiating trigonometric functions can

be combined with the Chain Rule.
Let's make explicit the special case of the Chain Rule where the outer function / is a

powerfunction.If y :lS@)f',thenwecanwrite y: Í(u): ø'where u: SO).Byusing
the Chain Rule and then the Power Rule, we get

dy:dy du
ùc du dx

T
E

)
)
c

Notice that the derivative in Example 1 could be calculated by taking n: I in Rule 4.

EXAMPTE 3 Using the Ghain Rule with the Power Rule Differentiate y : (x3 - 1)too

s0LUTl0N Taking u: SG) : x3 - I andn: 100 in (4), we have

dy _ d lx3_l)rm:100(,13 _r)**(",_t)* 
:Iì''.'- 

';' ' 3xz :3oox2(*' - r)"
1

x2 Ix*I

4 The Power Rule Gombined with the Chain Rule If n is any real number and
u: s(x) is differentiable, then

d .du
' (u') : nLt"-'--j-rlx dx

Alternatively fibr*\' : nlee)1"-t .g'(x)

ÊXAMPLE 4 Find /'(.r) iÎ f (x) --

I



s0LUTl0N First rewrite /: f (x) : (x2 + x * 1)-1lr, 16ut

f,G) : --lG' + x + t)-4/3 4 G'+ ;r + t)dx'
: -à(*' -t x * 7)-a/z(2x + l)

EXAMPLE 5 Find the derivative of the function

/r-z\nsØ:\rt+t)

(r,.t-)
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8 (zt+ 1).1- 2(t-2) 45(t-2)8 I(2t + l)2

ffi

¡

S0LUTI0N Combining the Power Rule, Chain Rule, and Quotient Rule, we get

ø'al : o(

:t(

2t
2t+l

d
dt

t-2
2t+l

n

a
ob

EXAMPTE 6 Using the Product Rule and the Chain Rule
Differentiate y: (2x + 1)5(x3 - x-l I)4.

SOLUTION In this example we must use the Product Rule before using the Chain Rule:

dv s!-(rr--r+r)4+( d
fr: fz* * t) o* .x3 - x + r)^ d* (2x + l)s

: (2x + l)s . 4(x3 - x * 1)3 4 G' - r + 1)' dx'
* (x'-x * l)a .5(2x + tY *(2x + t)

: 4(2x+ 1)5(x3 - x + 1)3(3r' - l) + 5(x3 - x + l)a(2x + l)4 . 2

Noticing that each term has the common factor 2(2x f 1)a(x3 - x * l)3, we could
factor it out and write the answer as

L: r(rr+ 1)a(x3 - x + 1)3(r7x3 + 6xz - 9x + 3) m
dx

(2t + l)10

EXAMPIET Differentiãte y : u"'n'.

S0LUTION Here the inner function is 9(x) : sin x and the outer function is the exponen-
tial function f(x) : e". So, by the Chain Rule,

The graphs of the functions y and y' in

Example 6 are shown in Figure 1. Notice that
y' is large when y ìncreases rapidly and

y' : 0 when y has a horizontal tangent. So

our answer appears to be reasonable.

10

-2

v' A./
v

l\l/

V

-10

FIGUßE 1

4

#

EW

'We can use the Chain Rule to differentiate an exponential function with any base a ) 0.
Recall from Section 1.6 that a : ¿'no. So

dY 
- 

d (¿,in,): ,"in,4 (sinx):e,in,cos.r
dx dx' dx'

a':(e'"")':r(tna)x
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Don't confuse Formula 5 (where x is the
exponentlwiTh the Power Rule (where ¡ is

the base):
d--(x'): nx'-'

{lX

L (o'\ : a'ln adx'

CHAPTER 3 DIFFERENTIATION RULES

and the Chain Rule gives

d d d.
* (a,) : -:- (e$na)x) - eïno)r * (lna)x
dx clx ax

: 
"(lna)x 

. ln A : A, ln A

because ln ø is a constant. So we have the formula

In particular, if a : 2, we get

fi rrl : 2* tn2

[l rxluelr I Using the cha¡n ßule twice If /(x) : sin(cos(tan x)), then

1'Q) : cos(cos(tan ù) +cos(tan x)
ax

: cos(cos(tan x))[-sin(ta n *)]* ftun r)

: -cos(cos(tanx)) sin(tanx) sec2r

d/_ : ,"""ru 4 (sec ze)de d0'
: esec3osec 39 ran loftfzel
: 3esec3o sec 30 tan 30

lf'
al
th,
ti(
ta

In Section 3.1 we gave the estimate

d
dx Q') - (0'69)2'

This is consistent with the exact formula (6) because ln2 = 0.693147.
The reason for the name "Chain Rule" becomes clear when we make a longer chain by

adding anotherlink. Supposethaty: f(r),u: SG), andx: h(t),where l,g,andhate
differentiable functions. Then, to compute the derivative of y with respect to t, we use the
Chain Rule twice:

dy:dydx_dydudx
dt dx dt du dx dt

Notice that we used the Chain Rule twice.

EXAMPLE 9 Differentiãte y : 
"seczo.

S0LUTI0N The outer function is the exponential function, the middle function is the
secant function, and the inner function is the tripling function. So we have

I

5

6

3
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Tangents to Parametric Curves
In Section 1.1 we discussed curves defined by parametric equations

x:f(t) y:sç)
The Chain Rule helps us find tangent lines to such curves. Suppose f and g are differen-
tiable functions and we want to find the tangent line at a point on the curve where y is also
a differentiable function of x. Then the Chain Rule gives

If dxldt # O, we can solve lor dy/dx:

Equation 7 (which you can remember by thinking of canceling the dt's) enables us
to flnd the slope dy ldx of the tangent to a parametric curve without having to eliminate
the parameter /. We see from (7) that the curve has a horizontal tangent when dy/dt : 0
(provided that dx/dt # 0) and it has a vertical tangent when dxfdt:0 (provided that
dy/dt * 0).

EXAMPTE t0 Find an equation of the tangent line to the parametric curve

x:2sin2t ,y:2sin t

at the point (.Æ, t) Where does this curve have horizontal or vertical tangents?

S0LUTION At the point with parameter value l, the slope is

dvd
(2 sin t)dy dt dt

dxdxd
- (2 sin2t)dt dt

2cost cos/: ,(""trùØ: 2"""2t

The point (Ji, t) corresponds to the parameter value t : rf 6, so the slope of the tan-
gent at that point is

dnl_Lt
dx l,:.tu

cos(rl6) $/z Ji
2cos(rr/3) 2(Ð 2

An equation of the tangent line is therefore

v- t:*ç-Jt)2'

dy _dy.dx
dt dx dt

lf we think of the curve as being traced out by

a moving particle, then dy/ dt and dxf dt are

the vertical and horizontal velocities of the par-

ticle and Formula 7 says that the slope of the
tangent is the ratio of these velocities.

)y
TE

he

t

Jt1"22

7

dy
dy_dt
dx dx

dt

dxif _+o
dt

J or
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3 Figure 2 shows the curve and its tangent line. The tangent line is horizontal when
dy/dx: 0, which occurs when cos I : 0 (and cos2t * 0), that is, when t: rf 2 or
3n/2. (Note that the entire curve is given by 0 < t < 2n.) Thus the curve has horizontal
tangents at the points (0,2) and (0, -2), which we could have guessed from Figure 2.

The tangent is vertical when dxfdt: 4 cos 2t : O (and cos t # 0), that is, when
t : rf 4, 3T/4, 5T/4, or 7 nf 4. The corresponding four points on the curve are
(*2, * Jj).If we look again at Figure 2, we see that our answer appears to be
reasonable. I

How to Prove the Ghain Rule
Recall thatif y : f@ andxchanges from ato a I A;r, we defined the increment of y as

Ly:f("+ A,x)-f(a)
According to the definition of a derivative, we have

Avlim É : f'@)Ar+0 [¡

So if we denote by e the difference between the difference quotient and the derivative,
we obtain

-3

FIGURE 2

3

-l E
1-6
[Idt
v=
î.
3,

5.

lim e: lim (* r'@):r'(o)-r'(a):o
1-

7

I
1t

1:

1:

f:

1l

2

2

But

A¡+0 À¡+0

Ay_
A-x

If we define e to be 0 when Ax : 0, then e becomes a continuous function of Â¡. Thus,
for a differentiable functiott.f,we can write

Ly : f'(") Àx * e Ax where s -> 0 as Ax'+ 0

and e is a continuous function of Ax. This property of differentiable functions is what
enables us to prove the Chain Rule.

PRO0F 0F THE CHAIN RULE Suppose u : g(¡) is differentiable at a and y : f (u) is differ-
entiable atb : g(a).If Ax is an increment in x and Aa and Ay are the corresponding
increments in ø and y, then we can use Equation 8 to writq

I
L,u : g'(a) Ax * e r L,x -- lg'(a) * e1] Â.r

where er --> 0 as A¡ --+ 0. Similarly

10 Ly : f'(b) L.u * ez Lu : lÍ'(b) I a2f Lu

where ez -+ 0 as A,u ---> O.If we now substitute the expression for Aø from Equation 9
into Equation 10, we get

Ay : lf'(b) + e2llg'(a) * e,l Ax

so +: lf'@) + urlls'(a) + el
AX

As Âx -> 0, Equation 9 shows that Lu --+ 0. So both er --> 0 and ez --> 0 as Ax -+ 0.

I

9
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Therefore
dy
dx

: Jl,lf'@) + 6,lls'(a) + etJ

: f'(b)s'@) : f'ø(o))s'@)

This proves the Chain Rule.

Àvlim I
a¡-o AX

Exercises

s. F(x) -

1-6 Write the composite function in the form f (s&Ð.
[Identify the inner function u: SU) and the outer function
y - f (u).1Then find the derivative dyf dx.

t.y: 4/t + ¿,x 2. y: (2x3 + 5)a

3. y: tanrx 4. y : sin(cotx)

5.y:"ú a.y:Jz-¿
7-36 Find the derivative of the function.
't. F(x): (ra * 3x' - 2)' L F(x) : (4x - x2)1n

10. f(x): (l + xa)2/3 ffi

39, Y: e"'sinBx 40. Y: ""'

41-44 Find an equation ofthe tangent line to the curve at the given
point.

41. y: (t + zx)to, (0, r) 42. y: ^F+4, Q,3)

43. y : sin(sin x), (ø 0) M. y : sin x * sin2x, (0, 0)

45. (a) Find an equation ofthe tangent line to the curve
y :2/(l * e-') at the point (0, 1).

(b) Illustrate part (a) by graphing the curve and the tangent line
on the same screen.

46. (a) The curve ) : lxl|2 - x'z is called abullet-nose curve.
Find an equation of the tangent line to this curve at the
point (1, 1).

(b) Illustrate part (a) by graphing the curve and the tangent line
on the same screen.

a7. (a) If/(;) : *Jz - *', ûnd /'("r).
ffi (b) Check to see that your answer to part (a) is reasonable by

comparing the graphs of / and /'.

EE AO. fne function f(x) : sin(.r * sin 2x),0 ( x ( z', arises in
applications to frequency modulation (FM) synthesis.
(a) Use a graph of / produced by a graphing device to make a

rough sketch of the graph of /'.
(b) Calculate /'(x) and use this expression, with a graphing

device, to graph /'. Compare with your sketch in part (a).

49. Find all points on the graph ofthe function
f(r) : 2sin x * sin2x at which the tangent line is horizontal.

50. Find the ¡-coordinates of all points on the curve
.) : sin 2x - 2 sin ¡ at which the tangent line is horizontal.

51. If r(x) : fØ(r)), where/(-2) :8, f'(-2) : 4, f'(s) :3,
s6) : -2, and 9'(5) : 6, find F'(5).

52. If h(x) , where f (L) :7 and f ',l) -* 4,
find È (1).

1-Zx
I11.f(z): *+r

13' Y: cos(ø3 + x3)

15. h(t) : ¡z - 3t

17. y: ,r-r'
19. y: (2x - 5)a(8xz - 5)-3

21, y: "*'o"/"'+t\'zt. y: \;r_7
25. y: sec2x * tan2x

21. t:-L' Jrz+l

29.y:sin(tan2x)

31. y : 2'in"
33. ): cot,(sin 0)

35. y : cos.rftin(tanzrr)

12. f (t) : I + taît

14.

t6.

t8.

20.

a¿.

24.

Y:43*cos3x
y : 3 cot(n9)

Y - e-2tcos 4t
h(t): (t4 - 1)3(13 + 1)4

y: 10r-r'?

Glv): / 
" 

\'
\Y+ l/

e'- e-u26. t¡ :' e'* e-u

28. Y: srø'/;

30. .f(Ð:
32.y: sin(sin(sinx))

34.y:,t;+ffi
36. y : 2t"'?

ffi

rt

37*40 Find y, and y,,

3t. ): cos(x2) 38. Y: "o.2"

Craphing calculator or computer with graphing software required lqA-Sl algebra system required L Homewo¡k Hints available in TEC
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53. A table of values for f, g, f', and g' is given.

(a) tf h(x) : f Ø(x)), find fr'(l).
@) If ä(x) : sUGÐ, tnd Ë1'(1).

54. Let f and g be the functions in Exercise 53.
(a) If F(.r) : f (f (r)), frnd F'Q).
(b) If G(¡) : sGGÐ, find G'(3).

55. If / and g are the functions whose graphs are shown, let
u(x) - f(s(x)), a(x) : sUGÐ, and w(x) : sk@Ð. Find each
derivative, if it exists. If it does not exist, explain why.
(a) u'(1) (b) ¿'(l) (c) ø'(l)

56. If / is the tunction whose graph is shown, let h(x) : f (f Q))
and g(-r) : f (r'). Use the graph of / to estimate the value
of each derivative.
(a) h'(2) (b) s'Q)

I
v: .f (x)

-1

0 .1 )

57. Use the table to estimate the value of å'(0.5), where
h(x) : f(s(x)).

x. 0 0.1 0.2 0.3 0.4 0.5 0.6

t@) t2.6 14.8 18.4 23.0 25.9 27.5 29.1

su) 0.s8 0.40 0.37 0.26 0.t'1 0.10 0.05

58. If g(¡) : f(f(r)), use the table to estimate the value of 9'(1)

x 0.0 0.5 1.0 1.5 2.O 2.5

f(x) 1.7 1.8 2.0 3.1 4.4

59. Suppose / is differentiable on R. Let F(x) : f(e') and
G(x) : ¿/(x). pin¿ expressions for (a) F'(x) and (b) G'(x)

60. Suppose / is differentiable on R and a is a real number.
Let F(x) : f (r") and G(x) : ["f(")]". Find expressions
for (a) F'(x) and (b) G'(x).

61. Let r(x) : f(g(h(x))), where h(r) : 2, sQ) : 3, h'(1) : 4,
S'(2) : 5, and f'(3): 6. Find r'(1).

62. lf g is a twice differentiable function and/(x) : xg(x'), frnd
/" in terms of g, g' , and g".

63, If F(x) : f(zf (qf?Ð), where/(O) : 0 and/'(0) : 2,
find F'(0).

6a. If F(¡) : fGfQfGÐ), where/(l) :2,f(2) :3,f '(t):4,
Í'(2) : 5, and/'(3) : 6, find F'(1).

65. Show that the function y : e2'(A cos 3x * B sin 3x) satisfies
the differential equation y" - 4y' + 13y : 0.

66, For what values of r does the function ! : e" satisfy the
differential equation y" - 4y' + y: 0?

67. Find the 50th derivative ofy : cos 2x.

68. Find the l000th derivative of f(x): xe-'

69. The displacement of a particle on a vibrating string is given by
the equation

s(r): 10 + Jsin(102'r)

where s is measured in centimetel's and I in seconds. Find the
velocity of the particle after t seconds.

70. If the equation of motion of a particle is given by
s : A cos(a;l + ô), the particle is said to undergo simple
harmoníc motion.
(a) Find the velocity of the particle at time f.
(b) When is the velocity 0?

71, A Cepheid variable star is a star whose brightness alternately
increases and decreases. The most easily visible such star is
Delta Cephei, for which the interval between times of maxi-
mum brightness is 5.4 days. The average brightness of this star
is 4.0 and its brightness changes by *0.35. In view of these
data, the brightness of Delta Cephei at time f, where / is mea-
sured in days, has been modeled by the function

B(t) :4.0* O.¡S r,"13)
\5.4/

(a) Find the rate of change of the brightness after I days.
(b) Find, correct to two decimal places, the rate of increase

after one day.

72. In Example 4 in Section 1.3 we arrived at a model for the
length of daylight (in hours) in Philadelphia on the lth day of
the year:

ffi

L(t):12 * z.t,nl#G - so)l

Use this model to compare how the number of hours of day-
light is increasing in Philadelphia on March 21 andMay 21.

v

f

{
sI

0 1 )t



ffi

ffi

75.

74, Under certain circumstances a rumor spreads according to the
equation

P(t): = I *' 1 + ae-k'

ß. The motion of a spring that is subject to a frictional force or
a damping force (such as a shock absorber in a car) is otten
modeled by the product of an exponential function and a sine
or cosine function. Suppose the equation of motion of a point
on such a spring is

s(t) : 2r-t s' sin2rt
where s is measured in centimeters and ¡ in seconds. Find
the velocity after I seconds and graph both the position and
velocity functions for 0 < ¡ < 2.

where p(r) is the proportion of the population that knows
the rumor at time t and a and fr are positive constants. [In
Section 7.5 we will see that this is a reasonable equation
for p(r).1
(a) Find lim,*-p(r).
(b) Find the rate of spread of the rumor.
(c) Graph p for the case a : 10, k :0.5 with f measured in

hours. Use the graph to estimate how long it will take for
807o of the population to hear the rumor.

A particle moves along a straight line with displacement s(t),
velocity u(t), and acceleration a(r). Show that
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ffi fA, fne table gives the US population from 1790 to 1860.

Year Population il Year Population

t790
1800

1810

t820

3,929,000

5,308,000

7,240,000

9,639,000

I 830

1840

1 850

1 860

r2,861,000

17,063,000

23,192,000

3t,443,000

(a) Use a graphing calculator or computer to fit an exponen-
tial function to the data. Graph the data points and the
exponential model. How good is the ût?

(b) Estimate the rates of population growth in 1800 and
1850 by averaging slopes of secant lines.

(c) Use the exponential model in part (a) to estimate the
rates of growth in 1800 and 1850. Compare these
estimates with the ones in part (b).

(d) Use the exponential model to predict the population in
1870. Compare with the actual population of 38,558,000.
Can you explain the discrepancy?

79-81 Find an equation of the tangent line to the curve at the
point corresponding to the given value of the parameter.

79.x:/+1, y:t3+Íi t:-l
80. ¡: cos0 * sin20, ): sin0 * cos20; 0:0
Bl.x:e{, y:t-lnt2; t:l

82-83 Find the points on the curve where the tangent is horizon-
tal or vertical. If you have a graphing device, graph the curve to
check your work.

82. x:2t3 + 3t2 * 12t, y : 2t3 + 3t2 + 1

83. x: 70 - t2, y: t3 - l2t

.. .. dua(t): u\Ð *

rr

Explain the difference between the meanings of the deriv-
atives dufdt and du/ds.

76. Air is being pumped into a spherical weather balloon. At any
time ¿, the volume of the balloon is V(t) and its radius is r(t)
(a) What do the derivatives dV/dr and dV/dt represent?
(b) Express dV/dt tnterms of drf dt.

ffi ff. fne flash unit on a camera operates by storing charge on a
capacitor and releasing it suddenly when the flash is set off.
The following data describe the charge Q remaining on the
capacitor (measured in microcoulombs, u,C) at time r (mea-
sured in seconds).

t 0.00 0.02 0.04 0.06 0.08 0.10

o 100.00 8l.87 67.03 54.88 44.93 36.76

(a) Use a graphing calculator or computer to find an expo-
nential model for the charge.

(b) The derivative Q'(r) represents the electric current (mea-
sured in microamperes, ¡.r,4) flowing from the capacitor to
the flash bulb. Use part (a) to estimate the current when
t -- 0.04 s. Compare with the result of Example 2 in
Section 2.1.

Show that the curve with parametric equations .r : sin l,
y : sin(r + sin /) has two tangent lines at the origin and find
their equations. Illustrate by graphing the curve and its
tangents.

A curve C is defined by the parametric equations x: t2,
., - .3 1+y - L JL.
(a) Show that C has two tangents at the point (3, 0) and find

their equations.
(b) Find the points on C where the tangent is horizontal or

vertical.
(c) Illustrate parts (a) and (b) by graphing C and the tangent

lines.

The cycloid x: r(0 - sin 0), y: r(l - cos 0) was
discussed in Example 7 in Section 1.7.
(a) Find an equation ofthe tangent to the cycloid at the

pointwhere 0: n/3.
(b) At what points is the tangent horizontal? Where is it

vertical?
(c) Graph the cycloid and its tangent lines for the case r : L

ffi eq.

85.

ffi

86.

ffi
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lzu] AZ. Computer algebra systems have commands that differentiate
functions, but the form of the answer may not be convenient
and so further commands may be necessary to simplify the
answer.
(a) Use a CAS to find the derivative in Example 5 and com-

pare with the answer in that example. Then use the sim-
plify command and compare again.

(b) Use a CAS to find the derivative in Example 6. What hap-
pens if you use the simplify command? What happens if
you use the factor command? Which form of the answer
would be best for locating horizontal tangents?

@ Ag. (a) Use a CAS to differentiate the function

91. Use the Chain Rule to show that if 0 is measured in degrees,
then

d (sin 0) cos 0
d0 180

(This gives one reason for the convention that radian measure
is always used when dealing with trigonometric functions in
calculus: The differentiation formulas would not be as simple
if we used degree measure.)

92. (a) Write I ,l : J *, and use the Chain Rule to show that

d t-t: 'dxt^t l*l
(b) if/(x) : I sin x l, nna ¡(x) and sketch the graphs of /

and /'. Where is / not differentiable?
(c) If ø(x) : sin I x l, nnA 9'(x) and sketch the graphs of g

and g'. Where is g not differentiable?

93. If y : /(ø) and u : SQ), where / and g are twice differen-
tiable functions, show that

d2y : d'y ( du\'? * dy d}u
ax2_ auz\axJ , d, dr,

94, Assume that a snowball melts so that its volume decreases at
a rate proportional to its surface area. If it takes three hours
for the snowball to decrease to half its original volume, how
much longer will it take for the snowball to melt completely?

'tf

xa-x*l
f(x) : x\x+l

and to simplify the result.
(b) Where does the graph of / have horizontal tangents?
(c) Graph f and f' on the same screen. Ate the graphs con-

sistent with your answer to part (b)?

89. (a) If ¡¿ is a positive integer, prove that

)

fi {rrn"* cos nx) : ¿ sin"-rx cos(n * l)x
(b) Find a formula for the derivative of y : cos'x cos ¿¡

that is similar to the one in part (a).

90. Find equations ofthe tangents to the curve x: 3t2 + l,
J : 2t3 * 1 that pass through the point (4, 3).

Bézier curves are used in computer-aided design and are named after the French mathema-
tician Pierre Bézier (1910-1999), who worked in the automotive industry. A cubic Bózier curve
is determined by four control points, Po(xo, yo), Pr(xr, yr), Pz(xz,yù, and P¡(¡:, y3), and is
defined by the parametric equations

x: xo(l - r)3 + 3xrl(1 - t)2 + 3xzt2(1 - t) * 4t3

¡l : )o(1 * r)3 + 3y¡(1 - t)2 + 3yzt2(1 - r) * y3r3

where 0 < t < 1. Notice that when t : 0 we have (r, y) : (¡0, yo) and when t : 1 we have
(¡, y) : (xz, yù, so the curye starts at Po and ends at P¡.

1. Graph the Bézier curve with control points Po(4, l), Pr(28, 48), P260,42), and &(40, 5).
Then, on the same screen, graph the line segments PoPr PtPz, and Pzh. (Exercise 29 in
Section 1,7 shows how to do this.) Notice that the middle control points P1 and Pz don't lie
on the curve; the curve stafis at Po, heads toward Pr and Pz without reaching them, and ends
al P3,

2. From the graph in Problem 1, it appears that the tangent at Ps passes through Pr and the
tangent at P3 passes through Pz. Prove it.

ffi Bézier CurvesW

ffi Graphing calculator or computer with graphing softwa¡e required



37"-40 Find the limit.

37, ,!!1* sin-tx

39, J{* arctan(ø')

38. lim u.".or/ t * "- )r+ø \l + 2x'/
40. ,1T. tan-r(ln -r)

41, (a) Suppose / is a one-to-one differentiable function and its
inverse function /-r is also differentiable. Use implicit
differentiation to show that

(I-\'(x):?#6
provided that the denominator is not 0.

(b) If /(4) : 5 andf '(4): .?, nna (,f -')(5).
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42. (a) Show that f(x) :2x i cos ¡ is one-to-one.
(b) What is the value of /-'(l)?
(c) Use the formula from Exercise 41(a) to find (/-'),(l).

¡lÍ1. Use the formula from Exercise 41(a) to prove
(a) Formula I (b) Formula 4

tl4. (a) Sketch the graph of the tunction /("r) : sin(sin-'x).
(b) Sketch the graph ofthe function 9(x) : sin-r(sin x),

¡¤R.
(c) Show thatg'(x) - cost

I cos.r | 
'

(d) Sketch the graph of htx) : cos-r(sin x), x E R, and find
its derivative.

Derivatives of Logarithmic Functions

I

VE

ic

--]
IJ

In this section we use implicit differentiation to tnd the derivatives of the logarithrnic func-
tions y: logox and, in particular, the natural logarithmic function y: lnx. (It can be
proved that logarithmic functions are differentiable; this is certainly plausible from their
graphs. See Figure 4 in Section 1.6 for the graphs of the logarithmic functions.)

4 Qoe'*): +-clJc x lna

Formula 3.4.5 says that

PR00F Lety: log,x. Then

ar:x
Differentiating this equation implicitly with respect to x, using Formula 3.4.5,we get-\.'-

.dv
aY(ln a) -i- : I' 'dx

4 þ') : o^rn n
d-x

the
1and so ùc aYlna xlna

If we put a : e in Formula 1, then the factor ln a on the right side becomes ln e : I
and we get the formula for the derivative of the natural logarithmic function log" x : ln x:

dvl

dr. (lnx):-cDc. x

By comparing Formulas 7 and2, we see one of the main reasons that natural logarithms
(logarithms with base e) are used in calculus: The differentiation formula is simplest when
a:ebecauselne:L

I

2
n-
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Figure 1 shows the graph of the function /
of Example 5 together with the graph of its
derivative. lt gives a visual check on our calcula-
tion. Notice that /'(x) is Iarge negative when /
is rapidly decreasing.

f'(*) : iln *)-'t' ftA".) : # x 2x$n x

M unmPut Differentiatey: ln(x3 + 1),

SOLUTI0N To use the Chain Rule, we lel' u : x3 + 1. Then y : ln ø, so

dy _ dy du _ I du : =r (3x2\: ?*'dx dudx udx x'+1 ¡'*1

d Idu. (lnu):-,d.x u ax
4ftns(.\:+dx g\x)

d
EXAMPLË 2 Find f tnGin x)

S0LUTI0N Using (3), wehave

4,n(rin .) ::-+(sin x) : .L"or.x: cot -rd"x sÍr x d^x, sln .r

EXAMPTË3 Differentiate f(*): Jl",
sOLUTl0N This time the logarithm is the inner function, so the chain Rule gives

In general, if we combine Fomula 2 with the Chain Rule as in Example 1, we get

I

I

I

Figu

Í(x)
l'þ
grar

larg

or

1 1

EXAMPLE 4 Differentiating a logarithm with base 10 Differentiate fG) : logro(2 * sin r)'

SOLUTION Using Formula 1 with a : lO, we have

d
f '(x) : å logro(2 * sin x)' clx

1 d,^_ (2 + sin _r)(2+sinx)lnl0 dx'
cos .X:(, 7

d x* IFind_ ln--:dx ,/x - 2

F

EXAMPTE 5 Simplifying before differentiating

SOLUTION 1

d x* I
Jr-z

I d x*l
v

0

ln x* I dx æ
f æ

x-2 r------;lx - ¿ 1-(x+tXåXr-2)-rtz
x* I
x-2- l1"r+ t;

x-2
f

(x+r)(x-2)
x-5

x1+

3

FIGURE 1

x

dx

2(x 2)
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SûLUTl0N 2 If we first simplify the given function using the laws of logarithms, then the
differentiation becomes easier :

þf; ¡

Kg

r -t).

çÐ:F

d x|l d.arr"ffi: fiLt"{' + 1) - itn(* - z)l

_ I t( I \
x-r t ;\--r)

(This answer can be left as written, but if we used a common denominator we would see
that it gives the same answèr as in Solution 1.) ffi

I exnrøerr6 Find f'(x)if f(x): tnlxl.
S0LUTI0N Since

figure 2 shows the graph 0f the funct¡on

f G.) : ln I x I in Example 6 and its derivative

l'\x) : l/x, Notice that when x is small, the

lraph ol y : In I x I is steep and so/'(x) is

large (positive or negative)

3
f(*) : ln.x

ln(-x)
if.t>0
ifx<0

it follows that

-3 3

Í'(r) :
I
)c

l1
- 

(- 1) : --xx

ifx>0

ifx<0Rfíi:

--J Thus /'(x) : I/x lor all x # 0

The result of Example 6 is worth remembering

¡w
FIGURE 2

[ogarithmic Differentiation
The calculation of derivatives of complicated functions involving products, quotients, or
powers can often be simplif,ed by taking logarithms. The method used in the following
example is called logarithmic differentiation.

EXAMPLE 7 Logarithmic differentiation Differentiate , : -'::6: :: ." (3x + Z)s

S0LUTI0N We take logarithms of both sides of the equation and use the Laws of Loga-
rithms to simplify:

lny:ïlnx * )tn1*' + 1) - 5ln(3x+ 2)

Differentiating implicitly with respect to x gives

dl
- lnl¡l : -dxrrx

Í
--\

4

ldv 3 I I 2x 3_L_ _._I_- E

; dr-1';-1' x, + | -'' 3*+2
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lf we hadn't used logarithmic differentiatlon in

Example 7, we would have had to use both the
Ouotient Hule and the Product Hule. The result-
ing calculation would have been honendous.

lf x : 0, we can show that /'(0) : 0 for
n > 1 directly from the definition of a
derivative.

CHAPTEß 3 DIFFEBENTIATION RULES

Solving for dyf dx, we get

dv (z
dx '\4x

x15*-x'+I 3x*2
Because we have an explicit expression for y, we can substitute and write

I

Figure

HG

graPh

dy - tc./A^F+ I
dx (3x + 2)s

J

4-
x 15 \+---l'x2+l 3x+2/ v

Steps in Logarithmic Ditferentiation

1. Take natural logarithms of both sides of an equation y : f (x) and use the Laws
of Logarithms to simPlifY.

2. Differentiate implicitly with respect to x.

3. Solve the resulting equation for y'.

If /(x) ( 0 for some values of .r, then ln /(x) is not deflned, but we can write

I y I : l/(.r) | and use Equarion 4. We illustrate this procedure by proving the general ver-

sion of the Power Rule, as promised in Section 3'1.

The Power Rule If n is any real number and f(x) : Í', then

f'(x) : nx"-t

PR00F Let y : x' and use logarithmic differentiation

0

ln ly I : ln lx l' : nlnlxl
y'n

Therefore v'
Hence y':n! :nx' :,*'*t"xx

You should distinguish carefully between the Power Rule l(x")' : nx"-tf, where the

base is variable and the exponent is constant, and the rule for differentiating exponential
functions lØ,), : a, ln af, where the base is constant and the exponent is variable.

In general there are four cases for exponents and bases:

t. 4 Ø\ : o (a and bare constants)dx'
d2.-
dx lf G)lu : bl f þc)lb - 

t f ' (x)

g. L¡on,o1: oei)(ln a)S,e)
clx.

4. To find (dldx)lf (x)ls(,), logarithmic differentiation can be used, as in the next
example.

x*0

F
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F¡qure 3 illustrates Example B by showìng the

giaphs of f G¡ : xr''and its derivative

[f fXnUeU I What to do if both base and exponent contain ¡ Differentiate ! : x6
S0LUTI0N 1 Using logarithmic differentiation, we have

lnY:1n 'ã: $ln'
v'll-: ^/x 

.- + (ln x) 

-
y )c zJx

.,,:,,( t - hx\--r/z+rn"\, _r\,8_rG)_, 
\_2G_)

S0LUT|ON 2 Another method is to write ¡J; : 7rr"'¡J;'

*ç"¡ : *Gn'"') : ,r;t" fttl; ^ ¡

R r

0

FIGUBE 3

FIGUBE 4

t'

y: (I + x)u'

- 2*Inx
2J*

x

(as in Solution l) I
,e

r- The Number ¿ as a Limit
We have shown thatif f Q) : ln x, then /'(x) : I/*. Thus f'(1) : 1. We now use this fact
to express the number e as a limit.

From the definition of a derivative as a limit, we have

/'(1): lg f(t+h)-f(r) .. f(r + x) - f(1)
r+0 Xh

ln(l +x)-lnl : timlln(l + x)r.-u -X

: tim¡+0 x

f

te
a1

----l- 1

2

0

: lim ln(l + x\r/'
¡+0

Because f '(I) : 1, we have

lim ln(l * x)t/. : 1

Then, by Theorem 2.4.8 and the continuity of the exponential function, we have

- - -l - etim,-.o ln(l+r)r/, : lim ¿Iil(l+x),r, : lim (l + Àt/,g - g 
ì*o x. -o

, : I'g (1 + a¡'r'

Formula 5 is illustrated by the graph of the function y : (1 * x)t/'in Figure 4 and a
table of values for small values of x. This illustrates the fact that, correct to seven decimal
places,

e :2.7182818

x

x (1-l x)lh

0.i
0.0i
0.001
0.0001
0.00001
0.000001
0.0000001
0.00000001

2.59374246
2.70481383
2.7t692393
2.71814593
2.71826824
2.71828047
2.71828t69
2.71828181

5
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If we put n : 1/x in Formula 5, then n ---> Ø as .r -+ 0* and so an alternative expression
for e is

e lim 11+-
n6

Exercises

S.f(x): sinx In(5x)

0t + l\3
11. F(t): ln*(3r - l).
13. g(x) : tn(xJx' -- t)

17.y:ln(e-'*xe-*)
19. y: 2xlogro$

1. Explain why the natural logarithmic function y : ln.x is used
much more frequently in calculus than the other logarithmic
functions y: log"x.

2-20 Differentiate the function.

2.f(x):xlnx-x
s. "f(x) : sin(lnr) a. Í(x) : ln(sinþ
5."f(x) : logz(l - 3r) 6. .f(x) : logs(xe')

t. f(ù: afi-x a. /(¡) : ln f
.. lflnl

10. f(r)
1 - lnl

12. h(x): h(x + Jr' - t)

14. F(y) : yln(l + er)

ffi Za. ninO equations of the tangent lines to the curve y : (lnx)/x at
the points (1, 0) and (e, l/ e). Illustrate by graphing the curve
and its tangent lines.

29. (a) On what interval is /(¡) : x lnx decreasing?
(b) On what interval is / concave upward?

ffi so. If /(x) : sin x I ln x, find /'(.r). Check that your answer is
reasonable by comparing the graphs of f and f'.

31. Let/(¡) : cx.+ ln(cos x). For what value of c isf'(n/4) : 67

32. Letf (x) : Iog,(3xz - 2).For what value of a is/'(1) : 3?

33-42 Use logarithmic differentiation to find the derivative of the
function.

33. y: (2x + l)s(xa - 3)6 34, y: ^fi er'(x'+ 1¡'0

sin2¡ tanax
35, v : --.--=-' (x'* l)'
37' v: *'
39. y: (cosx)''

41. y : (tan¡¡'l''

.|3. Find I if y: ln(.r2 + y2).

¡t4. Find !' if xt : ,'.
45. Find a formula for /0ù(x) if f (x) : ln(¡ - l)

d'
46. Find - 

(x" ln x).dx'

47. Use the deflnition of derivative to prove that

ln(l + x)I'g ', :t

a2-zt
û+r'

36. v: x2+l
x'-l15.y:lnl2- x- 5x2l 16. H(z):\n

18. y: [ln(1 + e')]'
20. y: logz(e-*cos øx)

38. Y : ""o"
40. v: tE'
42.y: (sinx)r"*

21-22 Find y' andy"

21' Y: x2ln(2x)
ln¡22.v:-.x-

23-24 Differentiate / and find the domain of /.

2a. Í(x): ln ln 1n x

25-21 Find an equation of the tangent line to the curve at the given
point.

25. y :1n(x2 - 3x + l), (3' 0)

26.y --1n(x3 - 7), (2,0)

21. y: h(xe"), (1,1) 48. Show that lim
x1+-
n

ffi Graphing calculator or computer with graphing software required 1. Homework Hints available in TEC

: e' for any .r ) 0.
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36. Brain weight B as a function of body weight t4z in fish has

been modeled by the power function B : 0.007W2/:, where
B and W are measured in grams. A model for body weight
as a function of body tength t (measured in centimeters) is
W : 0.12L253.If, over 10 million years, the average length of
a certain species of fish evolved from I 5 cm to 20 cm at a con-
stant rate, how fast was this species'brain growing when the
average length was 18 cm?

37. A television camera is positioned 4000 ft from the base of a
rocket launching pad. The angle of elevation of the camera has

to change at the correct rate in order to keep the rocket in sight.
Also, the mechanism for focusing the camera has to take into
account the increasing distance from the camera to the rising
rocket. Let's assume the rocket rises vertically and its speed is
600 ft/s when it has risen 3000 ft.
(a) How fast is the distance from the television camera to the

rocket changing at that moment?
(b) If the television camera is always kept aimed at the rocket,

how fast is the camera's angle ofelevation changing at that
same moment?

38. A lighthouse is located on a small island 3 km away from the
nearest point P on a straight shoreline and its light makes four
revolutions per minute. How fast is the beam of light moving
along the shoreline when it is 1 km from P?

39, A plane flies horizontally at an altitude of 5 km and passes

directly over a tracking telescope on the ground.'When the
angle of elevation is r/3, this angle is decreasing at a rate of
r/6nd/min. How fast is the plane traveling at that time?

40. A Ferris wheel with a radius of 10 m is rotating at a rate of one
revolution every 2 minutes. How fast is a rider rising when his
seat is 16 m above ground level?

41. A plane flying with a constant speed of 300 km/h passes over
a ground radar station at an altitude of 1 km and climbs at an

angle of 30'. At what rate is the distance from the plane to the
radar station increasing a minute later?

42. Two people start from the same point. One walks east at
3 milh and the other walks northeast at 2 milh. How fast is
the distance between the people changing after 15 minutes?

¡lÍ!. A runner sprints around a circular track of radius 100 m at
a constant speed of 7 m/s. The runner's friend is standing
at a distance 200 m from the center ofthe track. How fast is
the distance between the friends changing when the distance
between them is 200 m?

44. The minute hand on a watch is 8 mm long and the hour hand
is 4 mm long. How fast is the distance between the tips of the
hands changing at one o'clock?

Maximum and Minimum Values

Some of the most important applications of differential calculus arc optimization prob'
lems, in which we ale required to find the optimal (best) way of doing something. Here are

examples of such problems that we will solve in this chapter:

r 'What is the shape of a can that minimizes manufacturing costs?

r What is the maximum accsleration of a space shuttle? (This is an important
question to the astronauts who have to withstand the effects of acceleration.)

r What is the radius of a contracted windpipe that expels air most rapidly during
a cough?

r At what angle should blood vessels branch so as to minimize the energy expended
by the heart in pumping blood?

These problems can be reduced to finding the maximum or minimum values of a function'
Let's first explain exaitly what we mean by maximum and minimum values.

We see that the highest point on the graph of the function / shown in Figure 1 is the

point (3, 5). In other words, the largest value of/is/(3) : 5. Likewise, the smallest value
is/(6) : 2. We say that/(3) : 5 is rhe absolute maximum of/and/(6) :2isthe abso'
Iute minimum. In general, we use the following definition.

1 Definition Let c be a number in the domain D of a functionl Then/(c) is the

r absolute maximum value of /on D if f (c) > f G) for all ¡ in D.

r absolute minimum value of/on D if f (c) < "f(r) for all .r in D.

FI

M

v

-4

-2

6 .r0 2 4

FIGURE 1
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An absolute maximum or minimum is sometimes called a global maximum or mini-
mum. The maximum and minimum values of/are called extreme values ofl

Figure 2 shows the graph of a function / with absolute maximum at d and absolute
minimum at ø. Note that (d,f (d)) is rhe highest poinr on the graph and (ø,f (a)) is rhe low-
est point. In Figure 2, if we consider only values of x near å [for instance, if we restrict our
attention to the interval (a, c)1, then f(b) is the largest of those values of /(x) and is called
a local maximum value of f. Likewise, /(c) is called a local mínimum value of / because
"f(t) < /(x) for x near c [in the interval (b, d), for instance]. The function / also has a local
minimum af e.In general, we have the following definition.

2 Definition The number/(c) is a

r local maximum value of/ifl(r) =- f (x) when .r is near c.
r local minimum value of/if/(.) <,f(¡) when x is near c.

In Def,nition 2 (and elsewhere), if we say that something is true near c, we mean that
it is true on some open interval containing c. For instance, in Figure 3 we see thatf(4) : 5
is a local minimum because it's the smallest value of /on the interval 1. It's not the absolute
minimum because /(x) takes smaller values when x is near 12 (in the interval K, for
instance)' In fact f (12) : 3 is both a local minimum and the absolute minimum. Simi-
larly,/(8) : 7 is a local maximum, but not the absolute maximum because/takes larger
values near 1.

EXAMPIE 1 A function with infinitely many extreme values
The function f (x) : cos x takes on its (local and absolute) maximum value of 1 infi-
nitelymanytimes,since cos2nrt: l foranyinteger nand-1 { cos.r < l forall .r.
Likewise, cos(2n t 1)"' : - 1 is its minimum value, where n is any integer.

EXAlttPtE 2 A function with a minimum value but no maximum value
If f (x) : Í2, rhen f(x) >/(0) because x2 > 0 for all _r. Therefore /(0) : 0 is the
absolute (and local) minimum value off, This corresponds to the fact that the origin is
the lowest point on the parabola y : x2. (See Figure 4.) However, there is no highest
point on the parabola and so this function has no maximum value. r
EXAMPLE 3 A function with no maximum or minimum From the graph of the function
f(r) : x3, shown in Figure 5, we see that this function has neithei an absolute maximum
value nor an absolute minimum value. In fact, it has no local extreme values either.

te

r@)

f(a)

a0 bc d e x

L2x

IIGURE 2

Abs min /(a), abs max J(d)
loc min f(c), f(e),loc max f(b), Í(d)

8

v
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I

loc
max
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and
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min
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min

K
0

FIGUßE 3

l
b-
.re

J:xz

x

FIGURE 4
Minimum value 0, no maximum

)n.

he
ue
:o-

J: x3

0 x

FIGURE 5
No minimum, no maximum

ffi&

[l UnUfU 4 A maximum at an endpoint The graph of the funcrion

f(x):3x4 - l6x3 -t rïxz -l <x<4



264 CHAPTER 4 APPLICATIONS OF DIFFERENTIATION

(-1,3'7) J:3xa-16x3+18,tc2

(1,5)

is shown in Figure 6. You can see that Í(l) : 5 is a local maximum, whereas the
absolute maximum is "f(- l) : 37. (This absolute maximum is not a local maximum
because it occurs at an endpoint.) Also, /(0) : 0 is a local minimum and /(3) : -27 is
both a local and an absolute minimum. Note that / has neither a local nor ân absolute
maximum at x: 4. I

We have seen that some functions have extleme values, whereas others do not. The

following theorem gives conditions under which a function is guaranteed to possess

extreme values.

3 The Extreme Value Theorem If / is continuous on a closed interval la, bf , then

/attains an absolute maximum value /(c) and an absolute minimum value l(d) at
some numbers c and d inla, b]

The Extreme Value Theorem is illustrated in Figure 7. Note that an extreme value can

be taken on more than once. Although the Extreme Value Theorem is intuitively very plau-
sible, it is difficult to prove and so we omit the proof.

-1 45x

(3,-27)

FIGURE 6

vv v

db x a c d=b x dctdc, x
FIGURE 7 ac

0

Figures 8 and 9 show that a function need not possess extreme values if either hypoth-
esis (continuity or closed interval) is omitted from the Extreme Value Theorem.

vv
3

2x 0 2x

FIGURE 8

This function has minimum value
f(2):0, but no maximum value.

FIGUBE 9

This continuous function g has
no maximum or minimum.

The function/whose graph is shown in Figure 8 is defined on the closed interval [0,2]
but has no maximum value. [Notice that the range of/is [0, 3). The function takes on val-
ues arbitrarily close to 3, but never actually attains the value 3.1 This does not contradict
the Extreme Value Theorem because / is not continuous. fNonetheless, a discontinuous
function couldhave maximum and minimum values. See Exercise 13(b)'l

The function g shown in Figure 9 is continuous on the open interval (0, 2) but has nei-
ther a maximum noI a minimum value. [The range of 9 is (1, oo). The function takes otl
arbitrarily large values.l This does not contradict the Extreme Value Theorem because the

interval (0, 2) is not closed.
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The Extreme Value Theorem says that a continuous function on a closed interval has a
maximum value and a minimum value, but it does not tell us how to f,nd these extreme
values. We start by looking for local extreme values.

Figure 10 shows the graph of a function / with a local maximum at c and a local
minimum at d.It appears that at the maximum and minimum points the tangent lines are
horizontal and therefore each has slope 0. We know that the derivative is the slope of the
tangent line, so it appears that f '(c) : 0 and f '(d) :0. The following theorem says that
this is always true for differentiable functions.

(c' Í ("\)

(d, f (d.))

lq

lhe
ess

v

0 L d xcan
Iau-

FIGURE 1(l

Fertl¡at

Fermat's Theorem is named after Pierre Fermat
(1601-1665), a French lawyer who took up

mathematics as a hobby. Despite his amateur
status, Fermat was one of the two inventors of
analytic geometry (Descartes was the 0ther).

His methods for finding tangents to curves and

maximum and minimum values (before the
invention of limits and derivatìves) made him a

forerunner of Newton in the creation of differ-
ential calculus.

x

oth-

4 Fermat's Theorem If / has a local maximum or minimum at c, and if f '(c)
exists, then f'(c) : O

Our intuition suggests that Fermat's Theorem is true. A rigorous proof, using the defi-
nition of a derivative, is given in Appendix E.

Although Fermat's Theorem is very useful, we have to guard against reading too much
intoit.If /(,r) : Í3, then f'(x):3x2,so f'(0) :0. But/has nomaximumorminimum
at 0, as you can see from its graph in Figure 11. The fact that 

"f '(0) : 0 simply means that
the curve ! : x3 has a horizontal tangent at (0, 0). Instead of having a maximum or min-
imum at (0, 0), the curve crosses its horizontal tangent there.

ø Thus, when f'(t):0, / doesn't necessarily have a maximum or minimum at c. (In
other words, the converse of Fermat's Theorem is false in general.)

!: x3

v: lxl

0 x

v

0 x

FIGURE 11

If /(;r) = x3, then "f'(0) = 0 but /
has no maximum or minimum.

FIGURE 12

If /(x) : lx l, then /(0) : 0 is a
minimum value, but /'(0) does not exist.0,21

¡val'
adict
uous

i nel-
)s on
e tbe

We should bear in mind that there may be an extreme value where /'(c) does not exist.
For instance, the function f (x) : lx I has its (local and absolute) minimum value at 0 (see
Figure 12), but that value cannot be found by setting f'(*) :0 because, as was shown in
Example 6 in Section 2.1, f '(0) does not exist.

Fermat's Theorem does suggest that we should at least startlookjng for extreme values
of f at the numbers c where f'(c):0 or where /'(c) does not exist. Such numbers are
given a special name.
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Figure 1 3 shows a graph of the function /
in Example 5. h supports our answer because
there is a horizontal tangent when r : 1.5
and a vertical tangent when "Í : 0.

3.5

-0.5 5

FIGURE 13

We can estimate maximum and minimum val-
ues very easily using a graphing calculator or
a computer with graphìng software. But, as
Example 6 shows, calculus is needed lo find
the exaot values.

I

M rxnupu 5 Find the critical numbers of f (x) : f /5(Q - x)

SOLUTION The Product Rule gives

f,(x): x3/r(-I) ¡1r*-z/5(4 - x): -x3/5 + 3(4 ,,!)
5x2/s

-5x*3(a-x) 12-8x
5x'''

[The same result could be obtained by first writing f (x) : 4x3/s - x8lt.1 Therefore
f'(x):0if 12 - 8x: 0, thatis, *:|,and f'(x) does notexist whenx: 0. Thus the
critical numbers are J and 0. m

In terms of critical numbers, Fermat's Theorem can be rephrased as follows (compare
Definition 5 with Theorem 4):

6 If /has a local maximum or minimum at c, then c is a critical number of f

To find an absolute maximum or minimum of a continuous function on a closed interval,
we note that either it is local [in which case it occurs at a critical number by (6)] or it occurs
at an endpoint of the interval. Thus the following three-step procedure always works.

The Glosed lnterval Method To find the absolute maximum and minimum values of
a continuous function f on a closed interval [ø, á]:
t. Find the values of f at the critical numbers of f in (a,b).
2. Find the values of f at the endpoints of the interval.
3, The largest of the values from Steps I and 2 is the absolute maximum value;

the smallest of these values is the absolute minimum value.

EXAMPTE 6 Finding extreme values on a closed inlerval
(a) Use a graphing device to estimate the absolute minimum and maximum values of
the function f(x) : x - 2sinr, 0 < a 4 2r.
(b) Use calculus to find the exact minimum and maximum values.

SOLUTION
(a) Figure 14 shows a graph of / in the viewing rectangle lO,2t)by [-t,8]. By mov-
ing the cursor close to the maximum point, we see that the y-coordinates don't change
very much in the vicinity of the maximum. The absolute maximum value is about 6.9'7
and it occurs when x - 5.2. Similarly, by moving the cursor close to the minimum point,
we see that the absolute minimum value is about -0.68 and it occurs when x : 1.0. It is
possible to get more accurate estimates by zooming in toward the maximum and mini-
mum points, but instead let's use calculus.

z

0

-1

FIGURE 14

5 Definition A critical number of a function / is a number c in the domain of
./ such that either f 'k) : 0 or /'(c) does not exist.

2¡
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(b) Thefunction f(x): x - 2sinxiscontinuouson[0,2ø].Since f'(x):1- 2cosx,
we have f '(x) :0 when cos r : j and this occurs when x : 7r/3 or 5r/3. The values
of f at these critical numbers are

f(,,/3) : + - z sin[ : + - $ : -0.684852

and
J

The values of f at the endpoints are

/(0) : 0 and f(2n) :2rr: 6.28

Comparing these four numbers and using the Closed Interval Method, we see that the
absolute minimum value is f (r/3) : ,î13 - JT andthe absolute maximum value is
f (5ø13) : 5n/3 + JT. The values from part (a) serve as a check on our work. II
EXAMPIE ? The Hubble Space Telescope was deployed on April 24, L990, by the space

shuttle Discovery. A model for the velocity of the shuttle during this mission, from liftoff
at t : 0 until the solid rocket boosters were jettisoned at t : 126 s, is given by

ø(r) : 0.001302t3 - 0.09029t2 + 23.61t - 3.083

(in feet per second). Using this model, estimate the absolute maximum and minimum
values of the acceleration of the shuttle between liftoff and the jettisoning of the boosters.

SOLUTI0N We are asked for the extreme values not of the given velocity function, but
rather ofthe acceleration function. So we first need to differentiate to find the acceleration:

f (sn/3) 5¡r 5¡r 5r
JJ

2 sin + JT - 6.96s039

We now apply the Closed Interval Method to the continuous function ø on the interval
0 < ¡ < 126. Its derivative is

a'(t) : 0.007812t - 0. 18058

The only critical number occurs when a'(l) : g

d
a(t) : r'1r, 

= 7 @.ootz02t3 - 0.09029t2 + 23.61t - 3.083)

: 0.003906r' - 0.18058r + 23.6t

0.18058tt : 

-: 

23.12' 0.007812
V-

)
,|

lint'
Ít is

Evaluating a(t) atthe critical number and at the endpoints, we have

a(0) :23.61 a(t¡) - 21.52 a(126) : 62.81

So the maximum acceleration is about 62.87 ft/s2 and the minimurrr acceleration is
about 21.52 ftf s2 .

t-

lre

l
nl,
UTS

il
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Exercises ffi
1. Explain the difference between an absolute minimum and a

Iocal minimum.

2. Suppose / is a continuous function defrned on a closed
intewal la, b).
(a) What theorem guarantees the existence of an absolute max-

imum value and an absolute minimum value for /?
(b) What steps would you take to ûnd those maximum and

minimum values?

3-4 For each of the numbers a, b, c, d, r, and s, state whether the
function whose graph is shown has an absolute maximum or min-
imum, a local maximum or minimum, or neither a maximum
nor a minimum.

3,y 4.y

Sketch the graph of a function that has a local maximum
at2 and is continuous but not differentiable at 2.
Sketch the graph of a function that has a local maximum
at2 and is not continuous at 2.

Sketch the graph of a function on [- I, 2] that has an
absolute maximum but no local maximum.
Sketch the graph of a function on [- 1, 2] that has a local
maximum but no absolute maximum.

Sketch the graph of a function on [- 1, 2] that has an
absolute maximum but no absolute minimum.
Sketch the graph of a function on [ - I , 2] that is discontin-
uous but has both an absolute maximum and an absolute
minimum.

Sketch the graph of a function that has two local maxima,
one local minimum, and no absolute minimum.
Sketch the graph of a function that has three local minima,
two local maxima, and seven critical numbers.

if -2<x<0
if0<x<2

(b)

(c)

12. (a)

(b)

13. (a)

(b)

1a. (a)

(b)
A

5-6 Use the graph to state the absolute and local maximum and
minimum values of the function.

5. v'
y: sv)

\
1

1 )0

7-10 Sketch the graph of a function / that is continuous on
[1, 5] and has the given properties.

7, Absolute minimum at 2, absolute maximum at 3,
local minimum at 4

8. Absolute minimum at 1, absolute maximum at 5,
local maximum at2,local minimum at 4

9, Absolute maximum at 5, absolute minimum at 2,
local maximum at 3, local minima at2 and 4

10, / has no local maximum or minimum, but 2 and 4 are critical
numbers

11. (a) Sketch the graph of a function that has a local maximum
at2 and is differentiable at 2.

15-22 Sketch the graph of/ by hand and use your sketch to
flnd the absolute and local maximum and minimum values of /.
(Use the graphs and transformations of Sections 1.2 and I.3.)

15./(x):å(:x-t), ¡<3
ß.fG):2-tr*, xÞ-2
t7.f(x):f, 0<x<2
18. f(x) : ¿'
19./(x):1¡t, 0<x<2
20. f(t): cos /, -3n12 < t < 3nl2
21.f(x):r-J;

(4 -,'u.f(x): lr, _ ,

0 ab c d ¡ s.r 0 a b cd r sx

6.

E

E

23-38 Find the critical numbers ofthe function.

æ. fG): 4 + lx - !x2 2a. f(x): x3 + 6x2 - 75x

25. f(x): x3 + 3xz - 24x 26. f(x) : x3 + x2 + x

27. s(t) : 3ta + 4t3 - 6t2 28. g(t) -- lzt - +l

v- I2s.s(y):-r: - 30. h(p):+y'-yIl ''' p'+4
31. h(t) : ¡t/+ - 2rtlt
33. F(;) : aals(v - 4)2

35. f@):2cos 0 + sin20

37. f(x): ,2r-tx

32. g(x): xt/3 - x-2/3

3a. g(0) : 40 - tan9

36. h(t) :3t - arcsin t

3S. /(x) : x-2lnx

v

v: f(x)
1

0 I )

ffi Graphing calculator or computer with graphing software required 1. Homework Hints available in TEC
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55, If a a¡d b arc positive numbers, find the maximum value
of fG) : x'(l - x)¿, 0 < x < 1.

ffi SO. Use a graph to estimate the critical numbers of
f(x) : lxt - 3x'* 2 | correct to one decimal place.

57-60
(a) Use a graph to estimate the absolute maximum and minimum

values of the function to two decimal places.
(b) Use calculus to find the exact maximum and minimum values.

57./(x) : xs - x3 + 2, -1 <x< 1

50./(x):"'3-", -l<x<0
5e. /(x) : xJx - *
60. /(x) : x - 2cosx, -2 <x < 0

61. Between 0'C and 30'C, the volume V (in cubic centimeters)
of 1 kg of water at a temperature Z is given approximately by
the formula

v : 999.87 - 0.064267 + 0.0085043T' - 0.0000679T'

Find the temperature at which water has its maximum
density.
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62. An object with weight I,Ir is dragged along a horizontal plane
by a force acting along a rope attached to the object. If the
rope makes an angle d with the plane, then the magnitude of
the force is

.: *w
¡r, sin 0 * cos 0

wherc ¡r, is a positive constant called the cofficient of friction
and where 0 < I < n/2. Sltow that F is minimized when
tan 0 : p,.

63. A model for the US average price of a pound of white sugar
from 1993 to 2003 is given by the function

s(Ð : -0.00003237t5 + 0.000903714 - 0.00895613

+ 0.03629t2 - 0.04458t + 0.4074

where t is measured in years since August of 1993. Estimate
the times when sugar was cheapest and most expensive dur-
ing the period 19932003.

ffi OA. On ly'ray 7, 1992, the space shuttle Endeavour was launched
on mission STS-49, the purpose of which was to install a
new perigee kick motor in an Intelsat communications satel-
lite. The table gives the velocity data for the shuttle between
liftoff and thejettisoning of the solid rocket boosters.

Velocity (ft/s)Event Time (s)

0
10
15
20
32
59
62

125

0
185
3t9
447
742

1325
1445
415t

Launch
Begin roll maneuver
End roll maneuver
Throttle to 89%
Tbtotile to 67Vo
Throttle to 104Vo

Maximum dynamic pressure
Solid rocket booster seþaration

(a) Use a graphing calculator or computer to find the cubic
polynomial that best models the velociry of the shuttle for
the time interval t e 10, 1251. Then graph this polynomial.

(b) Find a model for the acceleration of the shuttle and use it
to estimate the maximum and minimum values of the
acceleration during the first 125 seconds.

65. When a foreign object lodged in the trachea (windpipe)
forces a person to cough, the diaphragm thrusts upward caus-
ing an increase in pressure in the lungs. This is accompanied
by a contraction of the trachea, making a narrower channel
for the expelled air to flow through. For a given amount of air
to escape in a fixed time, it must move faster through the nar-
rower channel than the wider one. The greater the velocity of
the airstream, the greater the force on the foreign object.
X rays show that the radius ofthe circular tracheal tube con-
tracts to about two-thirds of its normal radius during a cough.
According to a mathematical model of coughing, the velocity
ø of the airstream is related to the radius r of the trachea by

39-40 A formula for the derivative of a function / is given. How
rnany critical numbers does / have?

39. f'(x): J¿-orlrlsin¡ - I 40. f'(x): J00g+ - 1

ù

:ln-

4l-54 Find the absolute maximum and absolute minimum values
of / on the given interval.

aL f(x): 12 + 4x - x2, [0,5]
a2' f(x): 5 * 54x - 2x3, [0,4]
a3. f(x):2x3 - 3x2 - l2x + l, l-2,3)
aa. f(x): x3 - 6x2 + 9x + 2, l-1,4l
a5. f(x): xo - 2x2 + 3, l-2,31
a6. f(x): (¡2 - t)3, L-r,21
47. f(t): tJa -V, l-1,21

.2-a
as. f(x): ffi, l-4,41

45. f(x): *r-"/8, l-1,41
bo./(x):x-:Inx, li,z]
51. f (x) : ln(x2 + -r + 1), [-1, 1]

52. fG): x - 2tat-tx, [0,4]
53."f(Ð :2cost + sinzt, lO, n/21

¡q. f(t): t + cot(t/2), ln/a,7tr/al

ta,

na,

5t
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The Origins of l'Hospital's Rule

L'Hospital's Rule was lìrst published in 1696 in the Marquis de I'Hospital's calculus textbook
Analyse des Infiniment Petits, btÍ the rule was discovered in 1694 by the Swiss mathematician
John (Johann) Bernoulli. The explanation is that these two mathematicians had entered into a

curious business arangement whereby the Marquis de I'Hospital bought the rights to Bernoulli's
mathematical discoveries. The details, including a translation of I'Hospital's letter to Bernoulli
proposing the arangement, can be found in the book by Eves [].

Write a report on the historical and mathematical origins of I'Hospital's Rule. Start by pro-
viding brief biographical details of both men (the dictionary edited by Gillispie [2] is a good
source) and outline the business deal between them. Then give I'Hospital's statement of his rule,
which is found in Struik's sourcebook [4] and more briefly in the book of Katz [3]. Notice that
I'Hospital and Bernoulli formulated the rule geometrically anil gave lhe answer in terms of
differentials. Compare their statement with the version of I'Hospital's Rule given in Section 4.5
and show that the two statements are essentially the same.

1. Howa¡d Eves, In Mathematical Circles (Volume 2: Quadrants III and 1ll) (Boston: Prindle,
Weber and Schmidt, 1969), pp.20-22.

2. C. C. Gillispie, ed, Dictionary of Scientific Biography (New York: Scribner's, 1974). See the
article on Johann Bernoulli by E. A. Fellmann and J. O. Fleckenstein in Volume II and the
article on the Marquis de l'Hospital by Abraham Robinson in Volume VIII.

3. Victor Katz, A History of Mathemøtics: An Infioductloz (New York: HarperCollins, 1993),
p.484.

4. D. J. Struik, ed., A Soutcebook in Mathematics, 1200-1800 (Princeton, NJ: Princeton Uni-
versity Press, 1969), pp. 315-316.

r¡\,ww.stewartca I cu lus.com

The lnternet is another source of information for

rhis proiect. Click on drbtory oÍ Mathematicslo¡
a list of reliable websites.
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0ptimization Problems

'y

The methods we have learned in this chapter for finding extreme values have practical
applications in many Íìreas of life. A businessperson wants to minimize costs and maxi-
mize profits. A traveler wants to minimize transportation time. Fermat's Principle in optics
states that light follows the path that takes the least time. In this section and the next we
solve such problems as maximizing areas, volumes, and profits and minimizing distances,
times, and costs.

In solving such practical problems the greatest challenge is often to convert the word
problem into a mathematical optimization problem by setting up the function that is to be

F$ maximized or minimized. Let's recall the problem-solving principles discussed on page 83
and adapt them to this situation:

1. Understand the Problem The first step is to read the problem carefully until it is
clearly understood. Ask yourself: What is the unknown? What are the given
quantities? What are the given conditions?

2. Draw a Diagram [n most problems it is useful to draw a diagram and identify
the given and required quantities on the diagram.

3. lntroduce Notation Assign a symbol to the quantity that is to be maximized or
minimized (let's call it Q for now). Also select symbols (a, b, c, . . . , x, y) for
other unknown quantities and label the diagram with these symbols. It may help
to use initials as suggestive symbols-for example, A for area, Il for height, t for
time.
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W Understand the problem

N Analogy: Try special cases

þS Draw diagrams

Area : 100 ' 2200 -- 220,000 ft2

FIGURE 1

ffil lntroduce notation

4.

5.

EllAlf!|LEìi, Maximizing area A farmer has 2400 ft of fencing and wants to fence off a
rectangular freld that borders a straight river. He needs no fence along the river. What are
the dimensions of the field that has the largest area?

SOLUTI0N In order to get a feeling for what is happening in this problem, let's experi-
ment with some special cases. Figure 1 (not to scale) shows three possible ways of
laying out the24OO ft offencing.

Area : 700' 1000 : 700,000 ft2 Area : 1000' 400 : 400,000 ft2

We see that when we try shallow, wide fields or deep, narrow frelds, we get relatively
small areas. It seems plausible that there is some intermediate confrguration that pro-
duces the largest area.

Figure 2 illustrates the general case. 'We wish to maximize the area A of the rectangle.
Let x and y be the depth and width of the rectangle (in feet). Then we express A in terrns
of x and y:

A: xy

We want to express A as a function of just one variable, so we eliminate y by expressing
it in terms of ¡. To do this we use the given information that the total length of the fenc-
ing is 2400 ft. Thus

2x * y:2400

From this equation we have y : 2400 - 2x, which gives

A: x(2400 - 2*) :2400x - 2x2

Note that x > 0 and x < 1200 (otherwise A < 0). So the function that we wish to maxt-

(

êtq

F

FIGURE 2

mlze ls

A(x):2400x- 2x2 0<x< 1200



SECTION 4.6 OPTIMIZATION PROBLEMS 301

The derivative is A'(x) : 2400 - 4x, so to find the critical numbers we solve the
equation

2400 - 4x:0
which gives .r : 600. The rnaximum value of A must occur either at this critical nttmber
or at an endpoint of the interval. Since A(0) : 0, A(600) : 120,000, and A(1200) : 0,
the Closed Interval Method gives the maximum value as A(600) : 120,000.

[Alternatively, we could have observecl that A"(;r) : - 4 < 0 fbr ali x, so A is always
concave downward and the local maximum at r : 600 must be an absolute tnaximum.]

Thus the rectangular field should be 600 ft deep and 1200 ft wide. r .

[| exnnnrlf 2 Minimizing cost A cylindrical can is to be rnade to hold 1 L of oil. Find
the dimensions that will minirnize the cost of the metal to manufacture the can.

SrlLUTt0N Draw the diagram as in Figure 3, where r is the radius and å the height (both
in centimeters). In order to minimize the cost of the metal, we minimize the total surface
area of the cylinder (top, bottom, and sides). From Figure 4 we see that the sides are
made from a rectangular sheet with dimensions 2¡rr and /2. So the sutface area is

TE
h

FIGURE 3

A:2rr2 -l 2nrh

To eliminate å we use the fact that the volume is given as 1 L, which we take to be
1000 cm3. Thus

rr'h: looo

whiclr gives h : 1000/(rr2). Substitution of this into the expression for A gives
lt

A:2rr2 + 2"'(#) ^ 2000:2rr' f 
-

r

Arca2(trrz)

FIGUBE 4

Area (2rr\ h

In the Applìecl Project on page 31 1 we ìnvesti-
gate the most economical shape for a can by
taking inl0 accgutìt 0ther manufacluring costs.

Therefore the function that we want to minimize is

2000A(r):2m' I 
-

r
To lìnd the critical numbers, we differentiate:

2000 4(ørr - s00)A'(r):4tr- I : 
,,

Then A'(r) : 0 when ¡rr3 : 500, so the only critical number is, : i/SOO/n .

Since the domain of A is (0, co), we can't use the argument of Example 1 concerning
endpoints. But we can observe that A'(r) ( 0 for , < \l5oO/n and A'(r) > 0 for
, > ilnO/ ,, so A is decreasing for a!!1to the left of- the critical number and increas-
ing lor all r to the right. Thus r : \/SOO / r must give rise to an absolute minirnum.

fAlter¡atively, we could argue that A(r) -> oo as r - > 0* and A(r) '> co as r > æ, so

there must be a minimurn value of A(r), which must occur at the critical number'. See
Figure 5.1

The value of li corresponding to , : f SOOI, ,t

/r : loo=o :' too,o,r', : r ^'@- : r,'¡rrt r(500fr)'/' -V î
Tlrus, to minimize the cost of the can, the radius should Ae {5001 n cm ancl the height
should be equai to twice the radius, namely, the diameter.

r)0

.v : A(.)

axi'

FIGURE 
5
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IEII rt¡o¿rl, 4.6 takes you through six addi-
tional optimizatíon problems, including animations
of the physical situations.

Note 1: The argument used in Example 2 to justify the absolute minimum is a variant
of the First Derivative Test (which applies only to local maximum or minimum values) and
is stated here for future reference.

First Derivative Test for Absolute Extreme Values Suppose that c is a critical number of
a continuous function / defined on an interval.
(a) If /'(¡) > 0for allx< candf'(x) < 0forallx > c,then"f(r) istheabsolute

maximum value of /.
(b) If /'(¡) < 0 for all x ( c and f'(x) ) 0 for all ¡ > c, then /(c) is the absolute

minimum value of /.

Note 2: An alternative method for solving optimization problems is to use implicit dif-
ferentiation. Let's look at Example 2 agun to illustrate the method. We work with the same
equations

A: 2¡rr2 * 2rrrh ¡rr2h: 1000

but instead of eliminating h, we differentiate both equations implicitly with respect to r:

,4 : 4¡rr * Z¡rh I 2rrh' Zrrrh * rr2h' : O

The minimum occurs at a critical number, so we set Ã : 0, simplify, and arrive at the
equations

2r*h*rh':0 2h*rh':0

and subtraction gives 2r - h: 0, or h: 2r.

I exnnnfu 3 Find the point on the parabola y2 : 2x that is closest to the point (1, 4).

SOLUTI0N The distance between the point (1, 4) and the point (x, y) is

d: JG; - tY +Tl -4r
(See Figure 6.) But if (x, y) lies on the parabola, then x : )y', to the expression for d
becomes d:W
(Alternatively, we could have substituted y : JU rc get d iî terms of ¡ alone.) Instead
of minimizing d, we minimize its square:

d' : f(y) : Gy' - r)' + (y * 4)'

(You should convince yourself that the minimum of d occurs at the same point as the
minimum of d2,but d2 is easier to work with.) Differentiating, we obtain

f'(y) :z(iy' - I)y + 2(y - 4) : y' - 8

so.f'(y) : 0 when y : 2.Observe rhat f'(y) ( 0 when y < 2 and f'(y) > 0 when
y > 2, so by the First Derivative Test for Absolute Extreme Values, the absolute mini-
mum occurs when y : 2. (Or we could simply say that because of the geometric nature
of the problem, it's obvious that there is a closest point but not a farthest point.) The
corresponding value of x is ¡ : iyt : 2. Thus the point on y2 : 2x closest to (1, 4)
is (2,2). 3
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EXAMPLE 4 Minimizing time A man launches his boat from point A on a bank of a
straight river, 3 km wide, and wants to reach point B, 8 km downstream on the opposite
bank, as quickly as possible (see Figure 7). He could row his boat directly across the
river to point C ancl then run to B, or he could row directly to B, or he could row to some
point D between C and B and then run to B. If he can row 6 km/h and run 8 km/h,
where should he land to reach B as soon as possible? (We assume that the speed of the
water is negligible compared with the speed at which the man rows.)

SûLUT|0N If we let x be the distance from C to D, then the running distance is
I DB I : 8 - .r and the Pythagorean Theorem gives the rowing distance as

IADI: x2 * 9. We use the equation

distance
time :

Íate

A

3 k¡n

TIGURE 7

FIGURE 8

D

8km

B
tif-
lìe

the

Then the rowing time is J* + g tA and the running tirne is (8 - .r)/S, so the total time
Z as a function of x is

. ^F+g 8-xT(x):- , * ,
The domain of this function 7 is [0, 8]. Notice that if x : 0, he rows to C and if x : 8,
he rows directly to B. The derivative of Z is

T'(.r\:--L-L6Jx2*9 8

Thus, using the fact that x > 0, we have

Ð. xI
6rF+s 8 -

¤> r6x2 :9(x2 + g) <=

+*: SJ,c' + I
7x2 : 8I

T'(x) : o

9T T
v : T(x)

'ad

The only critical number is x : g/fi. To see whether the minimum occurs at this criti-
cal number or at an endpoint of the domain [0, S], we evaluate T at all three points:

r(o):r.5 rl+): I + { :r.r, r(8): I :r.0,
\,/7/ 8 " 6

Since the smallest of these values of Z occurs when x : 9/rq, the absolute minimum
value of I must occur there. Figure 8 illustrates this calculation by showing the graph
of T.

Thus the man should land the boat at a point 9lû kn (- 3.4 km) downstream from
his starting point. : , :

[l exnfuflf 5 Find the area of the largest rectangle that can be inscribed in a semi-
circle of radius r.

sOLUTlOt\ 1 Let's take the semicircle to be the upper half of the circle x' + y' : r2 with
center the origin. Then the word inscribed means that the rectangle has two vertices on
the semicircle and two vertices on the ¡-axis as shown in Figure 9.

246 x
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rsin d

rcos0

FIGURE 1fl

Let (x, y) be the vertex that lies in the first quadrant. Then the rectangle has sides of
lengths 2x and y, so its area is

A:2xy
To eliminate y we use the fact that (x, y) lies on the circle x' + y" : 12 and so

y:Jr"-*".rnu,
A -- 2x,ú:, - f

The domain of this function is 0 { x { r. Its derivative is

Æ :zJr'z - ,r'z - 2x2 2(r2 - 2vz)

Jy2-¡z Jrz-f
whichis0when 2x2: r2,thatis, x: r/O (sincex > 0).Thisvalueof xgivesa
maximum value of Á since A(0) : 0 and A(r) : 0. Therefore the area of the largest
inscribed rectangle is

^(r):'z# , t"
2

SOLUTI0N z A simpler solution is possible if we think of using an angle as a variable. Let
0 be the angle shown in Figure 10. Then the area of the rectangle is

A(0) : (2r cos OXr sin 0) : r2(z sin g cos 0) : 12 sin20

We know that sin 20 has a maximum value of 1 and it occurs when 20 : 7r/2. So A(0)
has a maximum value of 12 and it occurs when 0 : T/4.

Notice that this trigonometric solution doesn't involve differentiation. In fact, we
didn't need to use calculult all. -
Applications to Business and Economics
In Section 3.8 we introduced the idea of marginal cost. Recall that if C(.r), the cost func'
tion, is the cost of producing.r units of a certain product, then the marginal cost is the rate
of change of C with respect to x. In other words, the marginal cost function is the deriva-
tive, C'(x), of the cost function.

Now let's consider marketing. Lel p(x) be the price per unit that the company can
charge if it sells .r units. Then p is called the demand function (or price function) and we
would expect it to be a decreasing function of x. If x units are sold and the price per unit
is p(x), then the total revenue is

R(x) : xp(x)

and R is called the revenue function. The derivative R' of the revenue function is ca[ed
the marginal revenue function and is the rate of change of revenue with respect to the
number of units sold.

If x units are sold, then the total profit is

P(x):R(x)-C(x)
and P is called the profit function. The marginal profit function is P', the derivative of
the profit function. In Exercises 43-48 you are asked to use the marginal cost, revenue'
and profit functions to minimize costs and maximize revenues and prof,ts.

T
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M fXnmplf 6, Maximizing revenue A store has been selling 200 DVD burners a week
at $350 each. A market survey indicates that for each $10 rebate offered to buyers, the
number of units sold will increase by 20 a week. Find the demand function and the rev-
enue function. How large a rebate should the store offer to maximize its revenue?

s0LUTl0N If x is the number of DVD burners sold per week, then the weekly increase in
sales is x - 200. For each increase of 20 units sold, the price is decreased by $10. So for
each additional unit sold, the decrease in price will be fr x iO and the demand function
is

p(x) :3s0 - å3(.r - 200) : as} - lx
The revenue function is

R(x): xp(x):450x-lxz

Since R'(x) : 450 - r, we see that R'(¡) : 0 when x : 450. This value of .r gives an
absolute maximum by the First Derivative Test (or simply by observing that the graph of
R is a parabola that opens downward). The corresponding price is

pØso): 4s0 - å(4s0) : 22s

and the rebate is 350 - 225 : I25. Therefore, to maximize revenue, the store should
offer a rebate of$125. I

Exercises
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I Consider the'following problem: Find two numbers whose sum
is 23 and whose product is a maximum.
(a) Make a table of values, like the following one, so that the

sum of the numbers in the first two columns is always 23.
On the basis of the evidence in your table, estimate the
answer to the problem.

First number Second number Product

I
2
3

22
2l
20

22
42
60

(b) Use calculus to solve the problem and compare with your
answer to part (a).

2' Find two numbers whose difference is 100 and whose product
is a minimum.

3. Find two positive numbers whose product is 100 and whose
sum is a minimum.

4. The sum of two positive numbe¡s is 16. What is the smallest
possible value of the sum of their squares?

5. Find the dimensions of a rectangle with perimeter 100 m
whose area is as large as possible.

6. Find the dimensions of a rectangle with area 1000 m2 whose
perimeter is as small as possible.

7. A model used for the yield Y of an agricultural crop as a func-
tion of the nitrogen level N in the soil (measured in appropriate
units) is

,,_ kN' r - 1+^l
where k is a positive constant. What nitrogen level gives the
best yield?

8. The rate (in mg carbon/m7tr) at which photosynthesis takes
place for a species ofphytoplankton is modeled by the function

D _ 100/'- I'+l+4
where l is the light intensity (measured in thousands of foot-
candles). For what light intensity is P a maximum?

,Of
tlØ,

Graphing calculator o¡ computer with graphing software required lbnsl Computer algebra system required 1. Homework Hints available in TEC
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L Consider the following problem: A farmer with 750 ft of
fencing wants to enclose a rectangular area and then divide it
into four pens with fencing parallel to one side of the rect-
angle. What is the largest possible total area of the four pens?
(a) Draw several diagrams illustrating the situation, some

with shallow, wide pens and some with deep, narrow
pens. Find the total areas of these conûgurations. Does it
appear that there is a maximum area? If so, estimate it.

(b) Draw a diagram illustrating the general situation.
Introduce notation and label the diagram with your
symbols.

(c) Write an expression for the total area.
(d) Use the given information to write an equation that

relates the variables.
(e) Use part (d) to write the total area as a function of one

variable.
(f) Finish solving the problem and compare the answer with

your estimate in part (a).

10, Consider the following problem: A box with an open top is to
be const¡ucted from a square piece of cardboard, 3 ft wide,
by cutting out a square from each of the four corners and
bending up the sides. Find the largest volume that such a box
can have.
(a) Draw several diagrams to illustrate the situation, some

short boxes with large bases and some tall boxes with
small bases. Find the volumes of several such boxes.
Does it appear that the¡e is a maximum volume? If so,
estimate it.

(b) Draw a diagram illustrating the general situation.
Introduce notation and label the diagram with your
symbols.

(c) Write an expression for the volume.
(d) Use the given information to write an equation that

relates the variables.
(e) Use part (d) to write the volume as a function of one

variable.
(f) Finish solving the problem and compare the answer with

your estimate in part (a).

11. If 1200 cm2 of material is available to make a box with a
square base and an open top, find the largest possible volume
of the box.

12. A box with a square base and open top must have a volume
of 32,000 cm3. Find the dimensions of the box that minimize
the amount of material used.

t3. (a) Show that of all the rectangles with a given area, the one
with smallest perimeter is a square.

(b) Show that of all the rectangles with a given perimeter, the
one with greatest area is a square,

14, A rectangular storage container with an open top is to have a
volume of 10 m3. The length of its base is twice the width.
Material for the base costs $10 per square meter. Material for
the sides costs $6 per square meter. Find the cost of materials
for the cheapest such container.

15. Find the points on the ellipse 4x2 + y2 : 4 that are farthest
away from the point (1, 0).

ffi tO. ninO, correct to two decimal places, the coordinates ofthe
point on the curve y : lan x that is closest to the point (1, 1).

17. Find the dimensions of the rectangle of largest area that can
be inscribed in an equilateral triangle of side .L if one side of
the rectangle lies on the base of the triangle.

f8. Find the dimensions of the rectangle of largest area that has
its base on the,{-axis and its other two vertices above the
x-axis and lying on the parabola ! : 8 - x2.

19. A right circular cylinder is inscribed in a sphere of radius r.
Find the laryest possible volume of such a cylinder.

20. Find the area of the largest rectangle that can be inscribed in
the ellipsex2/a2 + y2f b2 : 7.

21. Find the dimensions of the isosceles triangle of largest area
that can be inscribed in a circle ofradius r.

22. A cylindrical can without a top is made to contain V cm3 of
liquid. Find the dimensions that will minimize the cost of the
metal to make the can.

23. A Norman window has the shape of a rectangle surmounted
by a semicircle. (Thus the diameter of the semicircle is equal
to the width of the rectangle. See Exercise 58 on page 24.) Iï
the perimeter of the window is 30 ft, find the dimensions of
the window so that the greatest possible amount of light is
admitted.

24. A right circular cylinder is inscribed in a cone with height å
and base radius r. Find the largest possible volume of such a

cylinder.

?l A piece of wire l0 m long is cut into two pieces. One piece
is bent into a squÍÌre and the other is bent into an equilateral
triangle. How should the wire be cut so that the total area
enclosed is (a) a maximum? (b) A minimum?

26. A fence 8 ft tall runs parallel to a tall building at a distance of
4 ft f¡om the building. What is the length of the shortest lad-
der that will reach from the ground over the fence to the wall
of the building?

27. A cone-shaped drinking cup is made from a circular piece
of paper of radius À by cutting out a sector and joining the
edges CA and CB. Find the maximum capacity of such a cup.
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rest ,a A cone-shaped paper drinking cup is to be made to hold 27 cm]o"' 
nfwater. Find the height and radius ofthe cup that will use the

srnallest amount of PaPer.

oo A cone with height å is inscribed in a larger cone witho"' 
h"ighr 11 so that its vertex is at the center of the base of the

latgeÍ cone. Show that the inner cone has maximum volume
whenh: \H'

A0, The graph shows the fuel consumption c of a car (measured in
gallons per hour) as a function of the speed ø of the car. At very
low speeds the engine runs inefficiently, so initially c decreases
as the speed increases. But at high speeds the fuel consumption
increases. You can see that c(u) is minimized for this car when
a - 3O rru/h. However, for fuel efficiency, what must be mini-
mized is not the consumption in gallons per hour but rather the
fuel consumption in gallons per mile. Let's call this consump-
tion G. Using the graph, estimate the speed at which G has its
minimum value.
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minimize the surface area for a given volume, thus using the
least amount of wax in cell construction. Examination of these
cells has shown that the measure of the apex angle 0 is amaz-
ingly consistent. Based on the geometry ofthe cell, it can be
shown that the surface area S is given by

S : 6så - rls2cot o + (zszJzlz) csc o

where s, the length of the sides of the hexagon, and å, the
height, are constants.
(a) Calculate ds/dq.
(b) What angle should the bees prefer?
(c) Determine the minimum surface area of the cell (in terms

ofs and ft).
Note: Ãctual measurements of the angle 0 in beehives have
been made, and the measures of these angles seldom differ
from the calculated value by more than 2o.
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3f. If a resistor of R ohms is connected across a battery of E volts
with internal resistance r ohms, then the power (in watts) in the
external resistor is

E2RD--
(R * r)"

If E and r are fixed but rR varies, what is the maximum value of
the power?

For a fish swimming at a speed a relative to the water, the
energy expenditure per unit time is proportional to ?r3. It is
believed that migrating fish try to minimize the total energy
required to swim a fixed distance. If the fish are swimming
against a current u (u < u), then the time required to swim a
distance Lis L/(a - ø) and the total energy E required to
swim the distance is given by

E(u):oot' L

where a is the proportionality constant.
(a) Determine the value of u that minimizes E.
(b) Sketch the graph of E.
Norer This result has been verified experimentally; migrating
fish swim against a current at a speed 50Eo gteater than the
current speed.

3il' In a beehive, each cell is a regular hexagonal prism, open at
one end with a trihedral angle at the other end as in the figure.
It is believed that bees form their cells in such a way as to

of cell

front
of cell

34. A boat leaves a dock at 2:00 pu and travels due south at a
speed of 20 km/h. Another boat has been heading due east at
15 km/h and reaches the same dock at 3:00 plvt. At what time
were the two boats closest together?

35. An oil refinery is located on the north bank of a straight river
that is 2 km wide. A pipeline is to be constructed from the
refinery to storage tanks located on the south bank of the
river 6 km east of the refinery. The cost of laying pipe is
$400,000/km over land to a point P on the north bank and
$800,000/km under the river to the tanks. To minimize the cost
ofthe pipeline, where should P be located?

ffi fO. Suppose the refinery in Exercise 35 is located I km north ofthe
river. Where should P be located?

37. The illumination of an object by a light source is directly propor-
tional to the strength of the source and inversely proportional
to the square of the distance from the source. If two light
soulces, one three times as strong as the other, are placed 10 ft
apart, where should an object be placed on the line between the
sources so as to receive the least illumination?

38. A woman at a point A on the shore of a circular lake with
radius 2 mi wants to arrive at the point C diametrically
opposite A on the other side of the lake in the shortest possible

20 40 60 I)
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time (see the figure). She can walk at the iate of 4 mi/h and
row a boat at 2 rrrl/h. How should she proceed?

B

(c) If its weekly cost function is C(¡) : 68,000 + 150¡, how
should the manufacturer set the size of the rebate in order
to maximize its profit?

The manager of a 100-unit apartment complex knows from
experience that all units will be occupied if the rent is $800
per month. A market su¡:vey suggests that, on average, one
additional unit will remain vacant for each $10 increase in rent.
What rent should the manager charge to maximize revenue?

Let a and b be positive numbers. Find the length of the shortest
line segment that is cut off by the first quadrant and passes
through the point (a, å).

The frame for a kite is to be made from six pieces of wood.
The four exterior pieces have been cut with the lengths
indicated in the figure. To maximize the area of the kite, how
long should the diagonal pieces be?

6!.

A C

48.

49.

@so.

39. Find an equation ofthe line through the point (3, 5) that cuts
off the least area from the flrst quadrant.

40. At which points on the curve y : I + 40x3 - 3x5 does the
tangent line have the largest slope?

41. What is the shortest possible length of the line segment that is
cut offby the ûrst quadrant and is tangent to the curve y :3/x
at some point?

42. What is the smallest possible area of the triangle that is cut off
by the flrst quadrant and whose hypotenuse is tangent to the
ParabolaY:4 - x2 atsomePoint?

43. (a) If C(x) is the cost of producing ¡ units of a commodity,
then the average cost per unit is c(x) : C (x) / x. Show that
if the average cost is a minimum, then the marginal cost
equals the average cost.

(b) If C(¡) : 16,000 * 200x + 4x3/2, in dollars, find (i) the
cost, average cost, and marginal cost at a production level
of 1000 units; (ii) the production level that will minimize
the average cost; and (iii) the minimum average cost.

it4. (a) Show that if the proflt P(x) is a maximum, then the
marginal revenue equals the marginal cost.

(b) If C(x) : 16,000 + 500x - 1.6x2 * 0.004x3 is the cost
function and p(x) : 1700 - 7 x is the demand function,
find the production level that will maximize proflt.

45. A baseball team plays in a stadium that holds 55,000 spectators.
With ticket prices at $10, the average attendance had been
27,OOO. When ticket prices were lowered to $8, the average
attendance rose to 33,000.
(a) Find tle demand function, assuming that it is linear.
(b) How should ticket prices be set to maximize revenue?

46. During the summer months Terry makes and sells necklaces on
the beach. Last summer he sold the necklaces for $10 each and
his sales averaged 20 per day. When he increased the price by
$1, he found that the average decreased by two sales per day.
(a) Find the demand function, assuming that it is linear.
(b) Ifthe material for each necklace costs Terry $6, what

should the selling price be to maximize his profit?

47, A manufachrrer has been selling 1 000 television sets a week at
$450 each. A market survey indicates that for each $10 rebate
offered to the buyer, the number of sets sold will increase by
100 per week.
(a) Find the demand function.
(b) How large a rebate should the company offer the buyer in

order to maximize its revenue?

51. Let ø¡ be the velocity oflight in air and ø2 the velocity oflight
in water. According to Fermat's Principle, a ray of light will
travel from a point A in the air to a point B in the water by a
path ACB that minimizes the time taken. Show that

sin 0r 1)1

sin 0z 1)z

where 0r (the angle of incidence) and 0z (the angle ofrefrac-
tion) are as shown. This equation is known as Snell's Law.

52. Two vertical poles PB and S? are secured by a rope PRS
going from the top of the first pole to a point R on the ground
between the poles and then to the top ofthe second pole as in
the figure. Show that the shortest length of such a rope occurs
when 0r : 02.
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ß. The upper righrhand corner of a piece of paper, 12 in. by 8 in.,
as in ttre flgure, is folded over to the bottom edge. How would
you fold it so as to minimize the length of the fold? In other
words, how would you choose ¡ to minimize y?

12

84. A steel pipe is being carried down a hallway 9 ft wide. At the
end of the hail there is a right-angled turn into a narrower hall-
way 6 ft wide. What is the length of the longest pipe that can
be carried horizontally around the corner?

55. Find the maximum area of a rectangle that can be circum-
scribed about a given rectangle with length Z and width W
[I1inr.' Express the area as a function of an angle 0.]

56. A rain gutter is to be constructed from a metal sheet of width
30 cm by bending up one-third of the sheet on each side
through an angle 0. How should 0 be chosen so that the gutter
will carry the maximum amount of water?

0

l.- l0 cm *l* 10 cm *l* 10 cm -*l

57. Where should the point P be chosen on the line segment AB so
as to maximize the angle 0?
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58. A painting in an art gallery has height å and is hung so that its
lower edge is a distance d above the eye of an observer (as in
the figure). How far from the wall should the observer stand to
get the best view? (In other words, where should the observer
stand so as to maximize the angle 0 subtended at his eye by the
painting?)

59. Ornithologists have determined that some species ofbirds tend
to avoid flights over large bodies of water during daylight
hours. It is believed that more energy is required to fly over
water than over land because air generally rises over land and
falls over water during the day. A bird with these tendencies is
released from an island that is 5 km from the nearest point B
on a straight shoreline, flies to a point C on the shoreline, and
then flies along the shoreline to its nesting area D. Assume that
the bird instinctively chooses a path that will minimize its
energy expenditure. Points B andD are 13 km apart.
(a) In general, if it takes 1.4 times as much energy to fly over

water as it does over land, to what point C should the bird
fly in order to minimize the total energy expended in
returning to its nesting area?

(b) Let W and I denote the energy (injoules) per kilomerer
flown over water and land, respectively. What would a large
value of the rctio W/L mean in terms of the bird's flight?
What would a small value mean? Determine the ratio Wf L
corresponding to the minimum expenditure of energy.

(c) What should the value of flLbe in order for the bird to fly
directly to its nesting area D? What should the value of W/L
be for the bird to fly to B and then along the shore to D?

(d) If the ornithologists observe that birds of a certain species
reach the shore at a point 4 km from B, how many times
more energy does it take a bird to fly over water than over
land?

60. The blood vascular system consists ofblood vessels (arteries,
arterioles, capillaries, and veins) that convey blood from
the heart to the organs and back to the heart. This system
should work so as to minimize the energy expended by the
heart in pumping the blood. In particular, this energy is reduced
when the resistance of the blood is lowered. One of Poiseuille's
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Laws gives the resistance R of the blood as

LR: C-ï
where L is the length of the blood vessel, r is the radius, and C
is a positive constant determined by the viscosity of the blood.
(Poiseuille established this law experimentally, but it also fol-
lows from Equation 6.7.2.)The figure shows a main blood ves-
sel with radius rr branching at an angle 0 into a smaller vessel
with radius rz.

vascular
branching

a

(a) Use Poiseuille's Law to show that the total resistance ofthe
blood along the path ABC is

61. The speeds of sound cr in an upper layer and c2 in a lower laye¡
of rock and the thickness h of the upper layer can be deter-
mined by seismic exploration if the speed of sound in the lower
Iayer is greater than the speed in the upper layer. A dynamite
charge is detonated at a point P and the transmitted signals are
recorded at a point Q, which is a distance D from P. The first
signal to arrive at Q travels along the surface and takes Tr sec-
onds. The next signal travels from P to a point R, from À to S
in the lower layer, and then to Q, takingT2 seconds. The third
signal is reflected off the lower layer at the midpoint O of RS
and takes T3 seconds to reach Q.
(a) Express TrTz, aîd 7: in terms of D, h, cu cz, and 0.
(b) Show that Tz is a minimum when sin 0 : ctf cz.
(c) Suppose that D : I km, Tl : 0.26 s, Tz: 0.32 s, and

Tt : Q.34 s. Find cr, cz, and h.
ï
b

I
PF_ D

0

o

î
h

I 0

À:

where ø and b ue the distances shown in the figure.
(b) Prove that this resistance is minimized when

ROs
Speed of sound : ct

Note: Geophysicists use this technique when studying the
structure of the earth's crust, whether searching for oil or
examining fault lines.

Two light sources ofidentical strength are placed 10 m apart.
An object is to be placed at a point P on a line I parallel to the
linejoining the light sources and at a distance d meters from if
(see the figure). We want to locate P on f so that the intensity
of illumination is minimized. We need to use the fact that the
intensity of illumination for a single source is directly propor-
tional to the strength of the source and inversely proportional to
the square of the distance from the source.
(a) Find an expression for the intensity I(x) at the point P.

(b) If d: 5 m, use graphs of /(x) and 1'(-r) to show that the
intensity is minimized when -r : 5 m, that is, when P is at
the midpoint of l.

(c) Ifd: 10 m, show that the intensity (perhaps surprisingly)
is not minimized at the midpoint.

(d) Somewhere between d : 5 m and d -- 10 m there is a tran-
sitional value of d at which the point of minimal illumina-
tion abruptly changes. Estimate this value of dby graphical
methods. Then frnd the exact value ofd.
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(c) Find the optimal branching angle (correct to the nearest
degree) when the radius of the smaller blood vessel is two-
thirds the radius of the larger vessel.

1

d

II

l=-t-------------*l

g

Speed of sound : ct

w 10m




