37-40 Find the limit.

37.
$$\lim_{x \to -1^+} \sin^{-1}x$$

38. $\lim_{x \to \infty} \arccos\left(\frac{1+x^2}{1+2x^2}\right)$
39. $\lim_{x \to \infty} \arctan(e^x)$
40. $\lim_{x \to 0^+} \tan^{-1}(\ln x)$

41. (a) Suppose f is a one-to-one differentiable function and its

inverse function f^{-1} is also differentiable. Use implicit differentiation to show that

$$(f^{-1})'(x) = \frac{1}{f'(f^{-1}(x))}$$

provided that the denominator is not 0. (b) If f(4) = 5 and $f'(4) = \frac{2}{3}$, find $(f^{-1})'(5)$. 42. (a) Show that $f(x) = 2x + \cos x$ is one-to-one. (b) What is the value of $f^{-1}(1)$?

(c) Use the formula from Exercise 41(a) to find $(f^{-1})'(1)$.

- 43. Use the formula from Exercise 41(a) to prove(a) Formula 1(b) Formula 4
- 44. (a) Sketch the graph of the function f(x) = sin(sin⁻¹x).
 (b) Sketch the graph of the function g(x) = sin⁻¹(sin x), x ∈ ℝ.

(c) Show that
$$g'(x) = \frac{\cos x}{|\cos x|}$$
.

(d) Sketch the graph of $h(x) = \cos^{-1}(\sin x)$, $x \in \mathbb{R}$, and find its derivative.

3.7 Derivatives of Logarithmic Functions

In this section we use implicit differentiation to find the derivatives of the logarithmic functions $y = \log_a x$ and, in particular, the natural logarithmic function $y = \ln x$. (It can be proved that logarithmic functions are differentiable; this is certainly plausible from their graphs. See Figure 4 in Section 1.6 for the graphs of the logarithmic functions.)

$$\frac{d}{dx}\left(\log_a x\right) = \frac{1}{x\ln a}$$

PROOF Let $y = \log_a x$. Then

 $a^y = x$

du

Differentiating this equation implicitly with respect to x, using Formula 3.4.5, we get \sim

Formula 3.4.5 says that

ve ic

the

$$\frac{d}{dx}(a^x) = a^x \ln a$$

and so

 $\frac{dy}{dx} = \frac{1}{a^y \ln a} = \frac{1}{x \ln a}$

If we put a = e in Formula 1, then the factor $\ln a$ on the right side becomes $\ln e = 1$ and we get the formula for the derivative of the natural logarithmic function $\log_e x = \ln x$:

$$\frac{d}{dx}(\ln x) = \frac{1}{x}$$

By comparing Formulas 1 and 2, we see one of the main reasons that natural logarithms (logarithms with base e) are used in calculus: The differentiation formula is simplest when a = e because $\ln e = 1$.

$$a^{y}(\ln a)\frac{dy}{dx} = 1$$
$$\frac{dy}{dx} = \frac{1}{a^{y} \ln a} = \frac{1}{a \ln b}$$

EXAMPLE 1 Differentiate $y = \ln(x^3 + 1)$.

SOLUTION To use the Chain Rule, we let $u = x^3 + 1$. Then $y = \ln u$, so

$$\frac{dy}{dx} = \frac{dy}{du}\frac{du}{dx} = \frac{1}{u}\frac{du}{dx} = \frac{1}{x^3 + 1}(3x^2) = \frac{3x^2}{x^3 + 1}$$

11111

Contraction of

Figu

f(x)f'(x)grat

larg

-:

F

In general, if we combine Formula 2 with the Chain Rule as in Example 1, we get

3
$$\frac{d}{dx}(\ln u) = \frac{1}{u}\frac{du}{dx}$$
 or $\frac{d}{dx}[\ln g(x)] = \frac{g'(x)}{g(x)}$

EXAMPLE 2 Find $\frac{d}{dx} \ln(\sin x)$.

SOLUTION Using (3), we have

$$\frac{d}{dx}\ln(\sin x) = \frac{1}{\sin x}\frac{d}{dx}(\sin x) = \frac{1}{\sin x}\cos x = \cot x$$

EXAMPLE 3 Differentiate $f(x) = \sqrt{\ln x}$.

SOLUTION This time the logarithm is the inner function, so the Chain Rule gives

$$f'(x) = \frac{1}{2} (\ln x)^{-1/2} \frac{d}{dx} (\ln x) = \frac{1}{2\sqrt{\ln x}} \cdot \frac{1}{x} = \frac{1}{2x\sqrt{\ln x}}$$

EXAMPLE 4 Differentiating a logarithm with base 10 Differentiate $f(x) = \log_{10}(2 + \sin x)$. SOLUTION Using Formula 1 with a = 10, we have

$$f'(x) = \frac{d}{dx} \log_{10}(2 + \sin x)$$

= $\frac{1}{(2 + \sin x) \ln 10} \frac{d}{dx} (2 + \sin x)$
= $\frac{\cos x}{(2 + \sin x) \ln 10}$

EXAMPLE 5 Simplifying before differentiating Find $\frac{d}{dx} \ln \frac{x+1}{\sqrt{x-2}}$.

SOLUTION 1

$$\frac{d}{dx} \ln \frac{x+1}{\sqrt{x-2}} = \frac{1}{\frac{x+1}{\sqrt{x-2}}} \frac{d}{dx} \frac{x+1}{\sqrt{x-2}}$$
$$= \frac{\sqrt{x-2}}{x+1} \frac{\sqrt{x-2} \cdot 1 - (x+1)(\frac{1}{2})(x-2)^{-1/2}}{x-2}$$
$$= \frac{x-2 - \frac{1}{2}(x+1)}{(x+1)(x-2)}$$
$$= \frac{x-5}{2(x+1)(x-2)}$$

Figure 1 shows the graph of the function f of Example 5 together with the graph of its derivative. It gives a visual check on our calculation. Notice that f'(x) is large negative when f is rapidly decreasing.

FIGURE 1

SOLUTION 2 If we first simplify the given function using the laws of logarithms, then the differentiation becomes easier:

$$\frac{d}{dx}\ln\frac{x+1}{\sqrt{x-2}} = \frac{d}{dx}\left[\ln(x+1) - \frac{1}{2}\ln(x-2)\right]$$
$$= \frac{1}{x+1} - \frac{1}{2}\left(\frac{1}{x-2}\right)$$

(This answer can be left as written, but if we used a common denominator we would see that it gives the same answer as in Solution 1.)

EXAMPLE 6 Find
$$f'(x)$$
 if $f(x) = \ln |x|$.

SOLUTION Since

$$f(x) = \begin{cases} \ln x & \text{if } x > 0\\ \ln(-x) & \text{if } x < 0 \end{cases}$$

it follows that

$$f'(x) = \begin{cases} \frac{1}{x} & \text{if } x > 0\\ \frac{1}{-x}(-1) = \frac{1}{x} & \text{if } x < 0 \end{cases}$$

Thus f'(x) = 1/x for all $x \neq 0$.

The result of Example 6 is worth remembering:

	$\frac{d}{dx}\ln $	$x \mid = \frac{1}{x}$
--	--------------------	------------------------

Logarithmic Differentiation

The calculation of derivatives of complicated functions involving products, quotients, or powers can often be simplified by taking logarithms. The method used in the following example is called **logarithmic differentiation**.

EXAMPLE 7 Logarithmic differentiation Differentiate
$$y = \frac{x^{3/4}\sqrt{x^2 + 1}}{(3x + 2)^5}$$

SOLUTION We take logarithms of both sides of the equation and use the Laws of Logarithms to simplify:

$$\ln y = \frac{3}{4} \ln x + \frac{1}{2} \ln(x^2 + 1) - 5 \ln(3x + 2)$$

Differentiating implicitly with respect to x gives

$$\frac{1}{y}\frac{dy}{dx} = \frac{3}{4} \cdot \frac{1}{x} + \frac{1}{2} \cdot \frac{2x}{x^2 + 1} - 5 \cdot \frac{3}{3x + 2}$$

Figure 2 shows the graph of the function $f(x) = \ln |x|$ in Example 6 and its derivative f'(x) = 1/x. Notice that when x is small, the graph of $y = \ln |x|$ is steep and so f'(x) is large (positive or negative).

FIGURE 2

Contraction of the

Aler S

If we hadn't used logarithmic differentiation in

Example 7, we would have had to use both the Quotient Rule and the Product Rule. The result-

ing calculation would have been horrendous.

Solving for dy/dx, we get

$$\frac{dy}{dx} = y \left(\frac{3}{4x} + \frac{x}{x^2 + 1} - \frac{15}{3x + 2}\right)$$

Because we have an explicit expression for y, we can substitute and write

$$\frac{dy}{dx} = \frac{x^{3/4}\sqrt{x^2+1}}{(3x+2)^5} \left(\frac{3}{4x} + \frac{x}{x^2+1} - \frac{15}{3x+2}\right)$$

Steps in Logarithmic Differentiation

- **1.** Take natural logarithms of both sides of an equation y = f(x) and use the Laws of Logarithms to simplify.
- 2. Differentiate implicitly with respect to x.
- 3. Solve the resulting equation for y'.

If f(x) < 0 for some values of x, then $\ln f(x)$ is not defined, but we can write |y| = |f(x)| and use Equation 4. We illustrate this procedure by proving the general version of the Power Rule, as promised in Section 3.1.

The Power Rule If *n* is any real number and $f(x) = x^n$, then

 $f'(x) = nx^{n-1}$

PROOF Let $y = x^n$ and use logarithmic differentiation:

$$\ln |y| = \ln |x|^n = n \ln |x|$$
 $x \neq 0$

 $y' = n\frac{y}{x} = n\frac{x^n}{x} = nx^{n-1}$

 $\frac{y'}{y} = \frac{n}{x}$

Therefore

Hence

You should distinguish carefully between the Power Rule $[(x^n)' = nx^{n-1}]$, where the \oslash base is variable and the exponent is constant, and the rule for differentiating exponential functions $[(a^x)' = a^x \ln a]$, where the base is constant and the exponent is variable.

In general there are four cases for exponents and bases:

1.
$$\frac{d}{dx}(a^b) = 0$$
 (a and b are constants)
2. $\frac{d}{dx}[f(x)]^b = b[f(x)]^{b-1}f'(x)$
3. $\frac{d}{dx}[a^{g(x)}] = a^{g(x)}(\ln a)g'(x)$

4. To find $(d/dx)[f(x)]^{g(x)}$, logarithmic differentiation can be used, as in the next example.

If x = 0, we can show that f'(0) = 0 for n > 1 directly from the definition of a derivative.

FIG

0

1000000

Figure

graph

EXAMPLE 8 What to do if both base and exponent contain x Differentiate $y = x^{\sqrt{x}}$.

SOLUTION 1 Using logarithmic differentiation, we have

Figure 3 illustrates Example 8 by showing the graphs of $f(x) = x^{\sqrt{x}}$ and its derivative.

FIGURE 3

SOLUTION 2 Another method is to write $x^{\sqrt{x}} = (e^{\ln x})^{\sqrt{x}}$:

 $\frac{d}{dx}(x^{\sqrt{x}}) = \frac{d}{dx}(e^{\sqrt{x}\ln x}) = e^{\sqrt{x}\ln x}\frac{d}{dx}(\sqrt{x}\ln x)$ $= x^{\sqrt{x}}\left(\frac{2+\ln x}{2\sqrt{x}}\right) \quad \text{(as in Solution 1)}$

The Number *e* as a Limit

We have shown that if $f(x) = \ln x$, then f'(x) = 1/x. Thus f'(1) = 1. We now use this fact to express the number *e* as a limit.

From the definition of a derivative as a limit, we have

$$f'(1) = \lim_{h \to 0} \frac{f(1+h) - f(1)}{h} = \lim_{x \to 0} \frac{f(1+x) - f(1)}{x}$$
$$= \lim_{x \to 0} \frac{\ln(1+x) - \ln 1}{x} = \lim_{x \to 0} \frac{1}{x} \ln(1+x)$$
$$= \lim_{x \to 0} \ln(1+x)^{1/x}$$

Because f'(1) = 1, we have

5

$$\lim_{x \to 0} \ln(1 + x)^{1/x} = 1$$

Then, by Theorem 2.4.8 and the continuity of the exponential function, we have

$$e = e^{1} = e^{\lim_{x \to 0} \ln(1+x)^{1/x}} = \lim_{x \to 0} e^{\ln(1+x)^{1/x}} = \lim_{x \to 0} (1+x)^{1/x}$$
$$e = \lim_{x \to 0} (1+x)^{1/x}$$

Formula 5 is illustrated by the graph of the function $y = (1 + x)^{1/x}$ in Figure 4 and a table of values for small values of x. This illustrates the fact that, correct to seven decimal places,

 $e \approx 2.7182818$

x	$(1+x)^{1/x}$
0.1	2.59374246
0.01	2.70481383
0.001	2.71692393
0.0001	2.71814593
0.00001	2.71826824
0.000001	2.71828047
0.0000001	2.71828169
0.00000001	2.71828181

⊐ ne al

e

If we put n = 1/x in Formula 5, then $n \to \infty$ as $x \to 0^+$ and so an alternative expression

3.7 Exercises

- 1. Explain why the natural logarithmic function $y = \ln x$ is used much more frequently in calculus than the other logarithmic functions $y = \log_a x$.
- 2-20 Differentiate the function.

2. $f(x) = x \ln x - x$	
3. $f(x) = \sin(\ln x)$	4. $f(x) = \ln(\sin^2 x)$
5. $f(x) = \log_2(1 - 3x)$	6. $f(x) = \log_5(xe^x)$
7. $f(x) = \sqrt[5]{\ln x}$	8. $f(x) = \ln \sqrt[5]{x}$
9. $f(x) = \sin x \ln(5x)$	10. $f(t) = \frac{1 + \ln t}{1 - \ln t}$
11. $F(t) = \ln \frac{(2t+1)^3}{(3t-1)^4}$	12. $h(x) = \ln(x + \sqrt{x^2 - 1})$
13. $g(x) = \ln(x\sqrt{x^2 - 1})$	14. $F(y) = y \ln(1 + e^{y})$
15. $y = \ln 2 - x - 5x^2 $	16. $H(z) = \ln \sqrt{\frac{a^2 - z^2}{a^2 + z^2}}$
17. $y = \ln(e^{-x} + xe^{-x})$	18. $y = [\ln(1 + e^x)]^2$
19. $y = 2x \log_{10} \sqrt{x}$	20. $y = \log_2(e^{-x} \cos \pi x)$
21–22 Find y' and y'' .	
21. $y = x^2 \ln(2x)$	22. $y = \frac{\ln x}{x^2}$

23–24 Differentiate f and find the domain of f.

23.
$$f(x) = \frac{x}{1 - \ln(x - 1)}$$
 24. $f(x) = \ln \ln \ln x$

25–27 Find an equation of the tangent line to the curve at the given point.

25. $y = \ln(x^2 - 3x + 1)$, (3, 0) **26.** $y = \ln(x^3 - 7)$, (2, 0) **27.** $y = \ln(xe^{x^2})$, (1, 1)

- **28.** Find equations of the tangent lines to the curve $y = (\ln x)/x$ at the points (1, 0) and (e, 1/e). Illustrate by graphing the curve and its tangent lines.
 - 29. (a) On what interval is f(x) = x ln x decreasing?(b) On what interval is f concave upward?
- factorial 30. If $f(x) = \sin x + \ln x$, find f'(x). Check that your answer is reasonable by comparing the graphs of f and f'.
 - **31.** Let $f(x) = cx + \ln(\cos x)$. For what value of c is $f'(\pi/4) = 6$?
 - **32.** Let $f(x) = \log_a(3x^2 2)$. For what value of *a* is f'(1) = 3?

33–42 Use logarithmic differentiation to find the derivative of the function.

33. $y = (2x + 1)^5(x^4 - 3)^6$	34. $y = \sqrt{x} e^{x^2} (x^2 + 1)^{10}$
35. $y = \frac{\sin^2 x \tan^4 x}{(x^2 + 1)^2}$	36. $y = \sqrt[4]{\frac{x^2+1}{x^2-1}}$
37. $y = x^x$	38. $y = x^{\cos x}$
39. $y = (\cos x)^x$	40. $y = \sqrt{x^{x}}$
41. $y = (\tan x)^{1/x}$	42. $y = (\sin x)^{\ln x}$

- **43.** Find y' if $y = \ln(x^2 + y^2)$.
- **44.** Find y' if $x^y = y^x$.
- **45.** Find a formula for $f^{(n)}(x)$ if $f(x) = \ln(x 1)$.
- **46.** Find $\frac{d^9}{dx^9}(x^8 \ln x)$.
- 47. Use the definition of derivative to prove that

$$\lim_{x \to 0} \frac{\ln(1+x)}{x} = 1$$

48. Show that
$$\lim_{n \to \infty} \left(1 + \frac{x}{n} \right)^n = e^x$$
 for any $x > 0$.