Exercises 5.4

- 1. $4 \cdot 2 = 8$ routes
- 2. $3 \cdot 3 = 9$ routes
- 3. $3 \cdot 2 = 6$ routes
- **4.** $4 \cdot 4 = 16$ routes
- 5. 44.43.42 = 79,464 possibilities
- **6.** $20 \cdot 19 \cdot 18 = 6840$ possibilities
- 7. $20 \cdot 19 \cdot 18 = 6840$ possibilities
- 8. $6 \cdot 5 \cdot 4 \cdot 3 \cdot 2 \cdot 1 = 720$ possibilities
- 9. 30 because 30.29 = 870
- 10. 25 because $25 \cdot 24 = 600$
- 11. $\mathbf{a} \cdot 8 \cdot 7 \cdot 6 \cdot 5 \cdot 4 \cdot 3 \cdot 2 \cdot 1 = 40,320 \text{ ways}$
 - **b.** $5 \cdot 4 \cdot 3 \cdot 2 \cdot 1 \cdot 3 \cdot 2 \cdot 1 = 720$ ways

- 12. $\mathbf{a}. 9 \cdot 8 \cdot 7 \cdot 6 \cdot 5 \cdot 4 \cdot 3 \cdot 2 \cdot 1 = 362,880 \text{ ways}$
 - **b**. $3 \cdot 2 \cdot 1 \cdot 6 \cdot 5 \cdot 4 \cdot 3 \cdot 2 \cdot 1 = 4320$ ways
- 13. $4 \cdot 3 \cdot 2 \cdot 1 = 24$ words
- 14. $26 \cdot 25 \cdot 25 = 16,250$ words
- 15. $2 \cdot 3 = 6$ outfits
- 16. $2 \cdot 4 \cdot 2 = 16$ outfits
- 17. $3 \cdot 12 \cdot 10 \cdot 10 \cdot 10 \cdot 10 = 360,000$ serial numbers
- 18. $9 \cdot 26 \cdot 26 \cdot 26 \cdot 9 \cdot 9 \cdot 9 = 115,316,136$ license plates
- 19. $10^9 1 = 999,999,999$ social security numbers
- 20. $1 \cdot 26 \cdot 26 + 1 \cdot 26 \cdot 26 \cdot 26 = 18,252$ call letters
- 21. $8 \cdot 2 \cdot 10 = 160$ area codes
- 22. 8·10·10 = 800 area code

- 23. 9·10·10·1·1 = 900 5-digit palindromes
- 24. $9 \cdot 10 \cdot 10 \cdot 1 \cdot 1 \cdot 1 = 900$ 6-digit palindromes
- 25. $26 \cdot 26 \cdot 1 \cdot 1 = 676$ 4-letter palindromes
- 26. $26 \cdot 26 \cdot 1 = 676$ 3-letter palindromes
- 27. 15·15 = 225 matchups
- 28. 16·16 = 256 matchups
- **29.** $3200 \cdot 2 \cdot 24 \cdot 52 = 7,987,200$ deals per year
- 30. $25 \cdot 25 = 625$ with repetition
 - $25 \cdot 24 = 600$ without repetition
- 26.26.26=17,576 sets of unique initials. Since there are 20,000 students, at least two students have the same set of initials
- 26 · 26 = 676 sets of unique initials. Since there are 700 employees, at least two employees have the same set of initial.
- 33. 7.5 = 35 different possible halftime scores
- 34. If Gloria has 7 of each, she would have 7·7·7 = 343 outfits (which is not enough). If Gloria would need 8 of each, so she would have 8·8·8 = 512 outfits. Therefore, she has 8 of each.
- 35. $5 \cdot 4 = 20$ different mismatched sets
- 36. 11·10 = 110 different mismatched sets
- 37. $2^6 = 64$ possible sequences
- 38. $2^5 = 32$ possible sequences
- 39. $2^5 = 32$ possible ways
- **40.** $3^5 = 243$ possible ways
- **41.** $4^{10} = 1,048,576$ possible ways
- **42.** $5^{10} = 9,765,625$ possible ways
- 43. $10^5 = 100,000$ possible zip codes
- **44.** $10^4 = 10,000$ possible zip codes
- **45.** $8 \cdot 7 \cdot 6 \cdot 5 \cdot 4 \cdot 3 \cdot 2 \cdot 1 = 40,320$ ways

$$40320 \cdot 15 = 604,800$$
 seconds

$$\frac{604800}{60}$$
 = 10,080 minutes

$$\frac{10080}{60}$$
 = 168 hours

$$\frac{168}{24} = 7 \text{ days}$$

46. $25 \cdot 25 \cdot 9 \cdot 9 \cdot 9 \cdot 25 \cdot 25 = 284,765,625$ ways

$$\frac{284765625}{500000}$$
 = 569.53125 weeks

$$\frac{569.53125}{52} \approx 11 \text{ years}$$

- 47. $6 \cdot 7 \cdot 4 = 168$ days or 24 weeks
- 48. $7 \cdot 10 \cdot 4 = 280$ different meals
- **49.** $5 \cdot 11 \cdot (7 \cdot 2 + 1) \cdot 10 = 8250$ different ways
- 50. $5 \cdot 5 \cdot 2 = 50$ possibilities
- 51. $2^4 = 16$ possible ways
- **52.** $2^8 = 256$ possible ways
- 53. $2 \cdot 38 \cdot 38 = 2888$ different outcomes
- 54. $18 \cdot 17 \cdot 16 = 4896$ different outcomes
- 55. a. 9.8.7.6.5.4.3.2.1 = 362.880
 - **b.** $8 \cdot 7 \cdot 6 \cdot 5 \cdot 4 \cdot 3 \cdot 2 \cdot 1 \cdot 1 = 40.320$
 - c. $1 \cdot 6 \cdot 5 \cdot 4 \cdot 3 \cdot 2 \cdot 1 \cdot 1 \cdot 1 = 720$
- 56. $4 \cdot 3 \cdot 10 = 120$ different subjects are needed
- 57. $\frac{10.9}{2} + 10.10 = 145$ handshakes
- 58. $3 \cdot 2 \cdot 1 \cdot 3 \cdot 2 \cdot 1 = 36$ different ways
- **59.** $4 \cdot 3 \cdot 3 \cdot 3 \cdot 3 \cdot 3 = 972$ ways
- **60.** $3 \cdot 20 = 60$ wavs
- **61.** $7 \cdot 4 \cdot 2^6 = 1792$ different ballots
 - $8.5.3^6 = 29,160$ different ballots
- 62. $3 \cdot 6 + 3 \cdot 7 = 39$ different segments.
- 63. $2^4 = 16$ possible ways