3. Three problems:

$$P(20,3) = \frac{20!}{(20-3)!} = \frac{20 \cdot 19 \cdot 18 \cdot 17!}{17!} = 20 \cdot 19 \cdot 18$$
Number of ways to choose 3 persons from 20 if order matters: $D(3)$

Number of ways to choose 3 persons from 20 if order matters:
$$P(20, 3)$$

Number of ways to award gold, silver & bronze medals if 20 athletes compete:

Number of ways to choose 3 persons from 20 if order does not matter:
$$C(20,3) = \frac{20 \cdot 19 \cdot 18 \cdot 17!}{3 \cdot 2 \cdot 1 \cdot 17!} = \frac{20 \cdot 19 \cdot 18}{3 \cdot 2 \cdot 1}$$

Number of ways to choose 3 persons from 20 if order does not matter:
$$C(z0, 3)$$

Number of ways to award three medals (all gold) if 20 athletes compete: C(20, 3)

5. Number of ways are there to create a 9-person batting order from a 21-person baseball team:

We can choose anyone we want:
$$C(10,3) \cdot 3! = P(10,3) = 10 \cdot 9 \cdot 8$$

James must be president:
$$1 \cdot 9 \cdot 8 = P(9, 2) = C(9, 2) \cdot 2!$$

We can choose anyone we want:
$$C(10, 3)$$

James must be one of the committee members:
$$1 \cdot (9, 2)$$

9. A pizzeria offers 15 different toppings. Number of different pizzas possible:

$$C(15,0) + C(15,1) + \cdots + C(15,15)$$
10. Number of ways five Italian books and four novels be placed on a bookshelf if

The books can be placed in any order:
$$91$$