Name: _____

Problem	1	2/3	4	5 / 6	7	Total
Possible	20	23	15	24	18	100
Received						

DO NOT OPEN YOUR EXAM UNTIL TOLD TO DO SO.

You may use a 3 x 5 card (both sides) of notes, but no calculator.

FOR FULL CREDIT, SHOW ALL WORK RELATED TO FINDING EACH SOLUTION.

Close To Home

John McPherson

"Okee-doke! Let's just double-check. We're 130 feet up and we've got 45 yards of bungee cord, that's uh ... 90 feet. Allow for 30 feet of stretching, that gives us a total of ...120 feet. Perfect!"

20 points 1. Answer each of the following questions. No explanation is needed.

- **T F** A system of 3 equations and 3 unknowns could possibly have no solution.
- **T F** A system of 3 equations and 3 unknowns could possibly have a unique solution.
- **T F** A system of 3 equations and 3 unknowns could possibly have infinite solutions.
- T F A system of 2 equations and 4 unknowns could possibly have no solution.
- **T F** A system of 2 equations and 4 unknowns could possibly have a unique solution.
- T F A system of 2 equations and 4 unknowns could possibly have infinite solutions.
- **T F** Matrix $\begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$ is its own inverse.
- $\mathbf{T} \qquad \mathbf{F} \qquad \begin{bmatrix} 1 & 3\\ 2 & 4 \end{bmatrix} \begin{bmatrix} 5 & 7\\ 6 & 8 \end{bmatrix} = \begin{bmatrix} 5 & 21\\ 12 & 32 \end{bmatrix}.$
- **T F** $\begin{array}{c} 2x + 3y = a \\ 4x + 5y = b \end{array}$ might or might not have a solution, depending on the values of *a* and *b*.
- **T F** It is possible to choose values for *a* and *b* so that $\begin{bmatrix} 2 & 7 \\ a & b \end{bmatrix}$ has an inverse.

14 points 2. Suppose I have some nickels (5 cents each) and dimes (10 cents each). I have 13 coins total, 90 cents total, and I have 3 more nickels than dimes (so n = d + 3). How many of each type of coin do I have? Solve this by coming up with the three equations that correspond to these three conditions (13 coins total, 90 cents total, and 3 more nickels than dimes), then doing Gauss-Jordan Elimination to find the solution(s) to this system of equations. Don't just guess the solution. Or show that there is no solution, if that is the case.

9 points 3. Rework the previous problem, but with the modified restriction that we have 100 cents, rather than 90 cents (but with the other conditions remaining the same).

15 points 4. Solve for x, y and z in

$$x + y + z = 1$$

$$2x + y - z = 0$$

$$x + y + 2z = 1$$

by finding the inverse of the coefficient matrix

$$\begin{bmatrix} 1 & 1 & 1 \\ 2 & 1 & -1 \\ 1 & 1 & 2 \end{bmatrix}$$

and using it to find the values of x, y and z. Use the Gauss-Jordan Method for finding the inverse. You should not encounter any fractions in finding it. <u>Show work</u>. <u>Don't just guess answers</u>.

10 points 5. We are interested in solving the following system of equations,

$$3x + 2y = 7$$
$$6x + ay = b$$

where a and b are some constants whose values have not yet been decided. Give an example of values of a and b that result in the system having:

No solution:	<i>a</i> =	b =
One solution:	<i>a</i> =	<i>b</i> =
Infinite solutions:	<i>a</i> =	<i>b</i> =

14 points 6. Find the solution(s) to each of the following linear systems. If a system has more than one solution, give the general solution and then give *at least two* specific solutions. If a system has no solution, state that.

$$2x + 4y = 7$$
$$-x - y = -2$$

$$\begin{array}{rcl} x+y-&z+2w=5\\ -x-y+3z&&=7 \end{array}$$

18 points 7. A company produces two items, but uses up some of each product in the production process, as described by the input-output (consumption) matrix

$$A = \begin{bmatrix} \cdot & 6 & \cdot & 2 \\ 0 & \cdot & 5 \end{bmatrix}.$$

Note for this problem that (.5)(.4) = .2, and that $\frac{.5}{2} = \frac{5}{2}$ and $\frac{.4}{2} = 2$.

2 points How much of each product would be *consumed* if you *produced* 10 units of each product?

- 2 points How much of each product is *remaining* if you *produced* 10 units of each product?
- 2 points How much *more* of each product would be *consumed* if you produced *one more unit* of product 1?
- 12 points How much would you need to produce in order to *end up* with 10 units of each product? (Use the formula for finding the 2×2 matrix in this problem.) What is one thing about your solution that makes you think it is reasonable, i.e. that it could be the correct answer?