Name:

Problem	1	2/3	4/5	6 / 7	8	9	Total
Possible	8	16	14	22	20	20	100
Received							

DO NOT OPEN YOUR EXAM UNTIL TOLD TO DO SO.

You may use a 3×5 card of handwritten notes and a calculator.

FOR FULL CREDIT, SHOW ALL WORK RELATED TO FINDING EACH SOLUTION.

8 points 1. Match the graphs of the following four functions to the level curves show below the functions.

Just write a letter (a or b or c or d) next to each.

- 12 points 2. Consider the production function $f(x, y) = 32x^{1/4}y^{3/4}$, which gives the number of units of goods produced when x units of labor and y units of capital are used.
 - /4 Find $\frac{\partial f}{\partial x}$ and $\frac{\partial f}{\partial y}$.

$$\frac{\partial f}{\partial x} =$$

$$\frac{\partial f}{\partial y} =$$

/4 Evaluate $\frac{\partial f}{\partial x}$ and $\frac{\partial f}{\partial y}$ at x = 81 and y = 16. Note that $81^{1/4} = 3$ and $16^{1/4} = 2$.

$$\frac{\partial f}{\partial x}$$
(81,16) =

$$\frac{\partial f}{\partial y}$$
(81,16) =

- /2 Find the marginal productivity of capital of f at x = 81 and y = 16.
- Using above results, approximately what is f(81,17) f(81,16)?
- 4 points 3. Suppose that f(10,10) = 100, $\frac{\partial f}{\partial x}(10,10) = 4$ and $\frac{\partial f}{\partial y}(10,10) = 3$. Estimate f(11.5,9). Show pertinent details/work.

- 4 points 4. Suppose the distance D that a car can travel depends on the amount of gas g in the car and the total weight w of the passengers in the car. Circle > 0 or = 0 or < 0 for the following derivatives of D.
 - /2 Should $\frac{\partial D}{\partial g}$ be > 0 or = 0 or < 0?
 - /2 Should $\frac{\partial D}{\partial w}$ be > 0 or = 0 or < 0?
- 10 points 5. Find the point(s) at which $f(x,y) = 5x^2 2xy + 2y^2 6y + 7$ has minimum(s) and maximum(s), and determine what type of point (min or max or neither) each point is.

14 points 6. Find the following derivatives.

For
$$f(x, y) = e^{xy^2}$$

$$/3$$
 $\frac{\partial f}{\partial x} =$

$$/4 \qquad \frac{\partial^2 f}{\partial y \partial x} =$$

For
$$g(x, y) = x^2 \cdot \ln(y^3)$$

$$/3$$
 $\frac{\partial g}{\partial y} =$

$$/4 \qquad \frac{\partial^2 g}{\partial y^2} =$$

8 points 7. Suppose that I asked three students how many hours they study per week and what their current GPA is, and found a least squares line based on their responses of

$$GPA \approx 1.18 + .06 * hours studied$$

/4 What do the values of 1.18 and .06 tell us?

- What GPA would result from studying 10 hours per week?
- How many hours per week would you need to study to get a GPA of 3.58?

20 points 8. Suppose we want a very tiny home with dimensions x, y and z to have volume 1 cubic yard, so xyz = 1. Suppose that the daily loss (through the walls, ceiling and floor) of heat is given by

$$H = xy + 2xz + 4yz.$$

Find the dimensions of the home which minimize heat loss H.

For this problem, find the solution by substituting $z = \frac{1}{xy}$ into H = xy + 2xz + 4yz and (1) find the values of x and y at which H is minimized, and (2) show that at these x and y values function H is minimized (use second derivatives and D(x, y)).

20 points 9. Same as previous problem: minimize

$$H = xy + 2xz + 4yz$$

with the constraint that xyz = 1. But now solve this problem by <u>using the Lagrange Multiplier Method</u>.