Name:		
-------	--	--

Problem	Total
Possible	100
Received	

DO NOT OPEN YOUR EXAM UNTIL TOLD TO DO SO.

You may use a 3×5 (both sides) of handwritten notes. You will <u>not</u> use a calculator for this exam.

In answering the following questions, <u>except on page 4</u>, do not simplify the answers. For example, leave your answer in the form

P(5,3) or 12! or $C(4,3) \cdot C(7,4)$ or $2^5 - 2^3$ or $7 \cdot 6 \cdot 5$ or ...

Before giving out candy, the Gernsteads required that trick-or-treaters first watch a short video on dental care.

Deer Halloweens

/3	In how many ways can I arrange 6 French books and 8 novels on a shelf if the novels all have to be next to teach other?
/3	In how many ways can I select 3 books from 8?
/3	In how many ways can I arrange 3 books of 8 on a shelf?
/3	How many social security numbers are there if the only number that cannot be assigned is 000-00-0000?
/3	In how many ways can I divide a group of 20 people into two groups of 5 and one group of 10?
/3	How many ways can you give a \$1, \$2, and a \$5 bill to 3 of your 8 friends (one bill for each friend that you choose)?
/3	In how many ways can you choose 3 green balls and 2 red ones from a basket containing 5 green, 4 red and 6 yellow balls?
/3	How many numbers between 100000 and 999999 are there in which three digits are one number and the other three digits are another (e.g. 525252, 225552, 555222, etc.)?
/3	A certain country has 10-digit phone numbers: 3-digit area code, 7-digit phone number. How many 10-digit phone numbers are there if the only restriction is that 0 cannot be the first digit of either the area code or of the phone number?

/	/3	In how many ways could we divide a basketball team of 15 players into the 5 starters and the 10 substitutes?
/	′3	How many 4-digit numbers from 1000 to 9999 are there in which the digits are all different?
/	′3	How many ways could I choose three different toppings to put on three scoops of ice cream: one scoop of vanilla and two scoops of chocolate.
/	/3	If I have 10 pieces of candy, all of different types, and 10 kids show up at my door, in how many different ways could I hand the candy out, one piece to each kid?
		next four questions, there are 5 couples: 1 boy and 1 girl per couple; so in all, 5 boys rls, and 10 persons total.
	′3	In how many ways can we select 7 persons consisting of 3 boys and 4 girls?
/	′3	In how many ways can we select 4 persons if all 4 must come from different couples, i.e. you cannot have a boy and girl from the same couple?
/	/3	In how many ways can the 10 persons be seated side-by-side if the boys must be seated next to each other and the girls must to be seated next to each other?
/	/3	In how many ways can the 10 persons be seated side-by-side if each couple must be seated together?

For problems on this page, simplify your answers, i.e., compute an actual number.

For the	next five questions, there are 5 boys and 5 girls, so 10 persons total.
/5	In how many different ways could we choose 1 boy and 1 girl?
/5	In how many different ways could we choose any 2 of the 10?
/5	In how many different ways could we divide the 10 into two groups of sizes 2 and 8?
/5	In how many different ways could we choose a president and a vice-president from these 10 kids?
/5	If the girls are named Alice, Barb, Carol, Deb, and Elizabeth, in how many different ways could we seat the 10 kids side-by-side if the girls must all be next to each other and in alphabetical order?
	For the above problems, simplify your answers, i.e., give an actual number.

For the next two questions, you will go from point A to point B, and you will either go right (East) or down (South).

- /3 How many shortest routes are there from A to B?
- /3 How many shortest routes are there from A to B that pass through C?

For the next two questions, 20 runners will run a race. We are interested in how all 20 runners finish (rather than just the top 3, for example).

- How many different outcomes are there, i.e. how many different orderings are there of how the 20 runners finish the race?
- One of the runners is named Bob. How many different outcomes are there in which Bob finishes first?

For the next three questions, suppose there is a deck of 60 cards of 4 different colors of cards numbered 1 to 15. In how many ways can you choose 8 cards so that:

- You have a pair: 2 of one number, and the other 6 cards are all <u>different</u> other numbers, for example, 5 5 1 3 4 7 9 15.
- /4 All of them are the same color, for example, 1 3 4 5 7 9 11 15, all of one color.
- You have a really full house: 3 of one number, 3 of another number, and 2 of another number, for example, 5 5 5 7 7 11 11 11.