Problem 7-85
A particular natural gas consists, in mole percents, of $83.0 \% \mathrm{CH}_{4}, 11.2 \% \mathrm{C} 2 \mathrm{H} 6$, and $5.8 \% \mathrm{C} 3 \mathrm{H} 8$. A $385-\mathrm{L}$ sample of this gas, measured at $22.6^{\circ} \mathrm{C}$ and 739 mmHg , is burned at constant pressure in an excess of oxygen gas. How much heat, in kilojoules, is evolved in the combustion reaction?

This multi-step problem requires calculation of:

1) $\Delta H_{\text {combustion }}$ for each reaction
2) total quantity of gas (in moles)
3) the quantity, in moles, of each gas
4) the quantity of heat produced by each gas and summing the individual heats together
5) There's no table of $\Delta H_{\text {combustion }}$ in the textbook so use Hess' law to calculate the $\Delta H_{\text {combustion }}$ of each fuel gas from $\Delta H_{\text {formation }}$ (Table 7.2).

$$
\begin{aligned}
& \mathrm{CH}_{4}(\mathrm{~g})+2 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{CO}_{2}(\mathrm{~g})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{~g}) \\
& \Delta H_{\text {combusion }}^{\mathrm{CH}_{4}}=\left(-393.5 \mathrm{~kJ}+(2 \times-241.8 \mathrm{~kJ})-(-74.81 \mathrm{~kJ})=-802.31 \mathrm{~kJ}\left(/ \mathrm{molCH}_{4}\right)\right. \\
& \mathrm{C}_{2} \mathrm{H}_{6}(\mathrm{~g})+\frac{7}{2} \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{CO}_{2}(\mathrm{~g})+3 \mathrm{H}_{2} \mathrm{O}(\mathrm{~g}) \\
& \Delta H_{\text {combusion }}^{\mathrm{C}_{2} \mathrm{H}_{6}}=\left((2 \times-393.5 \mathrm{~kJ})+(3 \times-241.8 \mathrm{~kJ})-(-84.68 \mathrm{~kJ})=-1427.7 \mathrm{~kJ}\left(/ \mathrm{molC}_{2} \mathrm{H}_{6}\right)\right. \\
& \mathrm{C}_{3} \mathrm{H}_{8}(\mathrm{~g})+5 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 3 \mathrm{CO}_{2}(\mathrm{~g})+4 \mathrm{H}_{2} \mathrm{O}(\mathrm{~g}) \\
& \Delta H_{\text {combstion }}^{\mathrm{C}_{3} \mathrm{H}_{8}}=\left((3 \times-393.5 \mathrm{~kJ})+(4 \times-241.8 \mathrm{~kJ})-(-103.8 \mathrm{~kJ})=-2043.9 \mathrm{~kJ}\left(/ \mathrm{molC}_{2} \mathrm{H}_{6}\right)\right.
\end{aligned}
$$

2) Calculate the total moles of gas and 3) individual moles of each fuel.

$$
\begin{aligned}
& V=385 \mathrm{~L} \quad T=22.6^{\circ} \mathrm{C}=295.8 \mathrm{~K} \quad P=739 \mathrm{mmHg}=0.9724 \mathrm{~atm} \\
& n=\frac{P V}{R T}=\frac{(0.9724 \mathrm{~atm})(385 \mathrm{~L})}{\left(0.08206 \frac{\mathrm{~L} \cdot \mathrm{~atm}}{\mathrm{~mol} \cdot \mathrm{~K}}\right)(295.8 \mathrm{~K})}=15.43 \mathrm{~mol} \text { gas } \\
& n_{\mathrm{CH}_{4}}=0.830 \times 15.43 \mathrm{~mol}=12.80 \mathrm{~mol} \mathrm{CH}_{4} \\
& n_{\mathrm{C}_{2} \mathrm{H}_{6}}=0.112 \times 15.43 \mathrm{~mol}=1.728 \mathrm{~mol} \mathrm{C}_{2} \mathrm{H}_{8} \\
& n_{\mathrm{C}_{3} \mathrm{H}_{8}}=0.058 \times 15.43 \mathrm{~mol}=0.8949 \mathrm{~mol} \mathrm{C}_{3} \mathrm{H}_{8}
\end{aligned}
$$

4) Calculate the energy produced by the combustion of each and the total energy produced.

$$
\begin{aligned}
& \Delta H_{\text {combstion }}^{\mathrm{CH}_{4}}=-802.31 \mathrm{~kJ} / \mathrm{molCH}_{4} \quad q_{\mathrm{CH}_{4}}=n \cdot \Delta H_{\text {compustion }}^{\mathrm{CH}_{4}}=12.80 \mathrm{~mol} \times-802.31 \mathrm{~kJ} / \mathrm{mol} \mathrm{CH}_{4}=-10,270 \mathrm{~kJ} \\
& \Delta H_{\text {conbssion }}^{\mathrm{C}_{2} \mathrm{H}_{6}}=-1427.7 \mathrm{~kJ} / \mathrm{molC}_{2} \mathrm{H}_{6} \quad q_{\mathrm{C}_{2} \mathrm{H}_{6}}=n \cdot \Delta H_{\text {conbusion }}^{\mathrm{C}_{2} \mathrm{H}_{6}}=1.728 \mathrm{~mol} \times-1427.7 \mathrm{~kJ} / \mathrm{molC}_{2} \mathrm{H}_{6}=-2,467 \mathrm{~kJ} \\
& \Delta H_{\text {combstion }}^{\mathrm{C}_{3} \mathrm{H}_{8}}=-2043.9 \mathrm{~kJ} / \mathrm{molC}_{2} \mathrm{H}_{6} \quad q_{\mathrm{C}_{3} \mathrm{H}_{8}}=n \cdot \Delta H_{\text {combusion }}^{\mathrm{C}_{3} \mathrm{H}_{8}}=0.8949 \mathrm{~mol} \times-2043.9 \mathrm{~kJ} / \mathrm{molC}_{2} \mathrm{H}_{6}=-1829 \mathrm{~kJ} \\
& q_{\text {total }}=-14,600 \mathrm{~kJ}
\end{aligned}
$$

