Determination of Enthalpy of Neutralization by Calorimetry

Problem 7-24

The heat of neutralization of $\mathrm{HCl}(\mathrm{aq})$ by $\mathrm{NaOH}(\mathrm{aq})$ is $-55.84 \mathrm{~kJ} / \mathrm{mol} \mathrm{H} 2 \mathrm{O}$ produced. If 50.00 mL of 1.05 M NaOH is added to 25.00 mL of 1.86 M HCl , with both solutions originally at $24.72^{\circ} \mathrm{C}$, what will be the final temperature? Assume that no heat is lost to the surrounding air and that the solution produced in the neutralization reaction has a density of $1.02 \mathrm{~g} / \mathrm{mL}$ and a specific heat of $3.89 \mathrm{~J} \mathrm{~g}^{-10} \mathrm{C}^{1}$.

Solution:

This is a combination of a limiting reactant problem and calorimetry. Let's start with the stoichiometry.

$$
\begin{gathered}
\mathrm{HCl}(\mathrm{aq})+\mathrm{NaOH}(\mathrm{aq}) \rightarrow \mathrm{NaCl}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \\
n_{\mathrm{HCl}}=0.02500 \mathrm{~L} \times 1.86 \mathrm{M}=0.04650 \mathrm{~mol} \mathrm{HCl} \\
n_{\mathrm{NaOH}}=0.05000 \mathrm{~L} \times 1.05 \mathrm{M}=0.05250 \mathrm{~mol} \mathrm{NaOH}
\end{gathered}
$$

Since the stoichiometry is $1: 1$, by inspection the HCl is the limiting reactant.

$$
n_{\mathrm{H}_{2} \mathrm{O}}=0.04650 \mathrm{~mol} \mathrm{H} \mathrm{H}_{2} \mathrm{O} \text { produced }
$$

Now for the calorimetry. Write the $1^{\text {st }}$ Law equation for the system:

$$
\begin{gathered}
q_{\mathrm{rxn}}+q_{\text {soln }}=0 \\
\text { Expand the heat terms } \\
\Delta H_{\text {neutralization }} \times n_{\mathrm{H}_{2} \mathrm{O}}+m_{\text {soln }} c_{\text {soln }} \Delta T_{\text {soln }}=0
\end{gathered}
$$

The mass of the solution is calculated from density and volume:

$$
m_{\text {soln }}=75.00 \mathrm{~mL} \times 1.02 \frac{\mathrm{~g}}{\mathrm{~mL}}=76.50 \mathrm{~g} \text { soln }
$$

Finally, do the algebra:

$$
\begin{gathered}
\left(-55.84 \times 10^{3} \frac{\mathrm{~J}}{\mathrm{~mol}}\right)(0.04650 \mathrm{~mol} \mathrm{H} \mathrm{O})+(76.50 \mathrm{~g})\left(3.89 \frac{\mathrm{~J}}{\mathrm{~g} \circ}\right)\left(T_{\mathrm{f}}-24.72^{\circ} \mathrm{C}\right)=0 \\
\left(297.59 \frac{\mathrm{~J}}{{ }^{\circ} \mathrm{C}}\right)\left(T_{\mathrm{f}}-24.72^{\circ} \mathrm{C}\right)=2596.56 \mathrm{~J} \\
\left(T_{\mathrm{f}}-24.72^{\circ} \mathrm{C}\right)=8.725^{\circ} \mathrm{C} \\
T_{\mathrm{f}}=33.45^{\circ} \mathrm{C}
\end{gathered}
$$

