Thermochemistry I: Energy Transfer and Calorimetry

1. What amount of work (in J) is performed on the surroundings when a 1.0 L balloon at 745 mm Hg at $25^{\circ} \mathrm{C}$ is heated to $45^{\circ} \mathrm{C}$? (1 L.atm $=101.325 \mathrm{~J}$)

$$
\begin{aligned}
& w=-P \Delta V \\
& P=745 \mathrm{~mm} \mathrm{Hg} / 760 \frac{\mathrm{~mm} \mathrm{Hg}}{\mathrm{~atm}}=0.9803 \mathrm{~atm} \\
& T_{\mathrm{i}}=25^{\circ} \mathrm{C}+273 \mathrm{~K}=298 \mathrm{~K} \quad T_{\mathrm{f}}=45^{\circ} \mathrm{C}+273 \mathrm{~K}=318 \mathrm{~K} \\
& V_{\mathrm{f}}=V_{\mathrm{i}}\left(\frac{T_{\mathrm{f}}}{T_{\mathrm{i}}}\right)=1.0 \mathrm{~L}\left(\frac{318 \mathrm{~K}}{298 \mathrm{~K}}\right)=1.07 \mathrm{~L} \\
& \Delta V=1.07 \mathrm{~L}-1.0 \mathrm{~L}=0.07 \mathrm{~L} \\
& w=-(0.9803 \mathrm{~atm})(0.07 \mathrm{~L}) \times 101.325 \frac{\mathrm{~J}}{\mathrm{~L} \cdot \cdot \mathrm{~atm}}=-7.0 \mathrm{~J}
\end{aligned}
$$

2. What quantity of heat (in J) is necessary to raise 3.00 L of water $(d=1.00 \mathrm{~g} / \mathrm{mL})$ from $22.0^{\circ} \mathrm{C}$ to $63.0^{\circ} \mathrm{C}$?

$$
\begin{aligned}
& q=m c \Delta T \\
& m=3.00 \mathrm{~L} \times \frac{1000 \mathrm{~g}}{1 \mathrm{~L}}=3000 \mathrm{~g}(\pm 10 \mathrm{~g}) \\
& c=4.184 \frac{\mathrm{~J}}{\mathrm{~g} \cdot{ }^{\circ} \mathrm{C}} \\
& \Delta T=63.0^{\circ} \mathrm{C}-22.0^{\circ} \mathrm{C}=41.0^{\circ} \mathrm{C} \\
& q=(3000 \mathrm{~g})\left(4.184 \frac{\mathrm{~J}}{\mathrm{~g} \cdot{ }^{\circ} \mathrm{C}}\right)\left(41.0^{\circ} \mathrm{C}\right)=515,000 \mathrm{~J}
\end{aligned}
$$

3. A 200.0 mL quantity of 0.40 M HCl was added to 200.0 mL of 0.40 M NaOH in a solution (constant pressure) calorimeter. The temperature of each solution was $25.10^{\circ} \mathrm{C}$ before mixing. After mixing the solution rose to a temperature of $26.60^{\circ} \mathrm{C}$ before beginning to cool. The heat capacity of the calorimeter was determined by separate experiment to be $55 \mathrm{~J} /{ }^{\circ} \mathrm{C}$. What is ΔH_{rxn} per mol of $\mathrm{H}_{2} \mathrm{O}$ formed? Assume the solutions have a density of $1.00 \mathrm{~g} / \mathrm{mL}$ and their specific heats are similar to water; $c=4.18 \mathrm{~J} / \mathrm{g}^{\circ} \mathrm{C}$.

$$
\begin{array}{ll}
V_{\mathrm{HCl}}=200.0 \mathrm{~mL} & V_{\mathrm{NaOH}}=200.0 \mathrm{~mL} \\
m_{\mathrm{HCl}}=200.0 \mathrm{~g} & m_{\mathrm{NaOH}}=200.0 \mathrm{~g} \\
n_{\mathrm{HCl}}=0.2000 \mathrm{~L}(0.40 \mathrm{M})=0.080 \mathrm{~mol} \mathrm{HCl} & n_{\mathrm{NaOH}}=0.080 \mathrm{~mol} \mathrm{NaOH}
\end{array}
$$

\[

\]

$$
(0.080 \mathrm{~mol}) \Delta H+400.0 \mathrm{~g}\left(4.184 \frac{\mathrm{~J}}{\mathrm{~g} \cdot{ }^{\circ} \mathrm{C}}\right)\left(1.50^{\circ} \mathrm{C}\right)+55 \frac{\mathrm{~J}}{{ }^{\circ} \mathrm{C}}\left(1.50^{\circ} \mathrm{C}\right)=0
$$

$$
(0.080 \mathrm{~mol}) \Delta H=-2590.5 \mathrm{~J}
$$

$$
\Delta H=-32,400 \frac{\mathrm{~J}}{\mathrm{~mol}}
$$

4. A 1.00 g sample of table sugar (sucrose, $\mathrm{C}_{12} \mathrm{H}_{22} \mathrm{O}_{11}$) was burned in a bomb calorimeter (constant volume calorimeter) containing 1.50 kg of water. The temperature of the water in the calorimeter rose from $25.00^{\circ} \mathrm{C}$ to $27.32^{\circ} \mathrm{C}$. What is the $\Delta H_{\text {combustion }}$ of sucrose in kJ / g and $\mathrm{kJ} / \mathrm{mol}$? The heat capacity of the calorimeter was determined by separate experiment to be $837 \mathrm{~J} /{ }^{\circ} \mathrm{C}$.

$$
\begin{aligned}
& n_{\text {sucrose }}=1.00 \mathrm{~g} / 342.2 \frac{\mathrm{~g}}{\mathrm{~mol}}=2.922 \times 10^{-3} \mathrm{~mol} \\
& m_{\mathrm{H}_{2} \mathrm{O}}=1500 \mathrm{~g} \quad \Delta T=27.32^{\circ} \mathrm{C}-25.00^{\circ} \mathrm{C}=2.32^{\circ} \mathrm{C} \\
& \quad q_{\mathrm{rxn}}+q_{\text {soln }}+q_{\text {cal }}=0 \\
& q_{\text {soln }}=m C \Delta T \quad q_{\text {cal }}=C \Delta T \\
& q_{\mathrm{rxn}}=n \Delta H_{\mathrm{rxn}} \quad \\
& \left(2.922 \times 10^{-3} \mathrm{~mol}\right) \Delta H_{\text {combustion }}+1500 \mathrm{~g}\left(4.184 \frac{\mathrm{~J}}{\mathrm{~mol} \cdot \mathrm{~K}}\right)\left(2.32^{\circ} \mathrm{C}\right)+837 \frac{\mathrm{~J}}{{ }^{\circ} \mathrm{C}}\left(2.32^{\circ} \mathrm{C}\right)=0 \\
& \left(2.922 \times 10^{-3} \mathrm{~mol}\right) \Delta H_{\text {combustion }}=-16502 \mathrm{~J} \\
& \Delta H_{\text {combustion }}=-5.65 \times 10^{6} \frac{\mathrm{~J}}{\mathrm{~mol}}=-5650 \frac{\mathrm{~kJ}}{\mathrm{~mol}} \\
& \Delta H_{\text {combustion }}=\frac{-16502 \mathrm{~J}}{1.00 \mathrm{~g}}=-16,502 \frac{\mathrm{~J}}{\mathrm{~g}}=-16.5 \frac{\mathrm{~kg}}{\mathrm{~g}}
\end{aligned}
$$

5. Camphor $\left(\mathrm{C}_{10} \mathrm{H}_{16} \mathrm{O}\right)$ has a $\Delta H_{\text {combustion of }} 5903.6 \mathrm{~kJ} / \mathrm{mol}$. A 0.7610 g sample of camphor was burned in a bomb calorimeter containing $2.00 \times 10^{3} \mathrm{~g}$ of water. The temperature of the water increased from $22.78^{\circ} \mathrm{C}$ to $25.06^{\circ} \mathrm{C}$. What is the heat capacity of the calorimeter?

$$
\begin{aligned}
& M_{\text {camphor }}=152.23 \frac{\mathrm{~g}}{\mathrm{~mol}} \\
& n_{\text {camphor }}=0.7610 \mathrm{~g} / 152.23 \frac{\mathrm{~g}}{\mathrm{~mol}}=0.004999 \mathrm{~mol} \\
& \Delta T_{\text {cal, } \mathrm{H}_{2} \mathrm{O}}=25.06^{\circ} \mathrm{C}-22.78^{\circ} \mathrm{C}=2.28^{\circ} \mathrm{C} \\
& \\
& \begin{array}{l}
q_{\mathrm{rxn}}+q_{\text {soln }}+q_{\text {cal }}=0 \\
q_{\mathrm{rxn}}=n \Delta H_{\mathrm{rxn}} \\
q_{\text {soln }}=m C \Delta T
\end{array} \quad q_{\text {cal }}=C \Delta T
\end{aligned}
$$

$$
(0.004999 \mathrm{~mol})\left(-5903.6 \times 10^{3} \frac{\mathrm{~J}}{\mathrm{~mol}}\right)+2000 \mathrm{~g}\left(4.184 \frac{\mathrm{~J}}{\mathrm{~mol} \cdot \mathrm{~K}}\right)\left(2.28^{\circ} \mathrm{C}\right)+C_{\mathrm{cal}}\left(2.28^{\circ} \mathrm{C}\right)=0
$$

$$
-29512.6 \mathrm{~J}+19079 \mathrm{~J}+C_{\mathrm{cal}}\left(2.28^{\circ} \mathrm{C}\right)=0
$$

$$
C_{\text {cal }}\left(2.28^{\circ} \mathrm{C}\right)=10433.5 \mathrm{~J}
$$

$$
C_{\mathrm{cal}}=4576 \frac{\mathrm{~J}}{{ }_{\mathrm{o}}^{\mathrm{C}}}
$$

