Thermochemistry II: Calorimetry, Enthalpy, and Hess' Law

1. When 100.0 mL of 1.00 M HCl is mixed with 100.0 mL of 1.00 M NaOH , both initially at $21.1^{\circ} \mathrm{C}$, are mixed in a two-cup calorimeter the temperature of the mixture rises to $27.9^{\circ} \mathrm{C}$. Determine the ΔH of neutralization for the reaction

$$
\mathrm{HCl}_{(\mathrm{aq})}+\mathrm{NaOH}_{(\mathrm{aq})} \rightarrow \mathrm{NaCl}_{(\mathrm{aq})}+\mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})}
$$

By a prior experiment, the heat capacity of the calorimeter was determined to be $125 \mathrm{~J} /{ }^{\circ} \mathrm{C}$. Assume the density of the final solution is $1.0 \mathrm{~g} / \mathrm{mL}$ and the specific heat of the mixture is $4.18 \mathrm{~J} / \mathrm{g}^{\circ} \mathrm{C}$.

$$
\begin{aligned}
& \Delta T=27.9^{\circ} \mathrm{C}-21.1^{\circ} \mathrm{C}=6.8^{\circ} \mathrm{C} \\
& n_{\mathrm{HCl}}=n_{\text {NaOH }}=0.1000 \mathrm{~L} \times 1.00 \mathrm{M}=0.100 \mathrm{~mol} \\
& C_{\text {cal }}=125 \frac{\mathrm{~J}}{{ }^{\circ} \mathrm{C}} \\
& n \Delta H+m c \Delta T+C_{\text {cal }} \Delta T=0 \\
& \Delta H=-\frac{\left(m c+C_{\text {cal }}\right) \Delta T}{n}=\frac{\left[(200.0 \mathrm{~g})\left(4.18 \frac{\mathrm{~J}}{\mathrm{~g} \cdot{ }^{\circ} \mathrm{C}}\right)+125 \frac{\mathrm{~J}}{{ }^{\circ} \mathrm{C}}\right]\left(6.8^{\circ} \mathrm{C}\right)}{0.100 \mathrm{~mol}} \\
& \Delta H=-65,350 \frac{\mathrm{~J}}{\mathrm{~mol}}
\end{aligned}
$$

2. Consider the reaction

$$
\mathrm{C}_{12} \mathrm{H}_{22} \mathrm{O}_{11(\mathrm{~s})}+12 \mathrm{O}_{2(\mathrm{~g})} \rightarrow 12 \mathrm{CO}_{2(\mathrm{~g})}+11 \mathrm{H}_{2} \mathrm{O}_{(\mathrm{g})}
$$

which has a ΔH of $-5.65 \times 10^{3} \mathrm{~kJ} / \mathrm{mol}\left(\mathrm{C}_{12} \mathrm{H}_{22} \mathrm{O}_{11}\right)$. How much heat (energy) can be produced during the complete combustion of 10.0 g of sucrose?

$$
\begin{aligned}
& q=n \Delta H_{\text {comb }} \\
& n=10.0 \mathrm{~g} / 342.2 \mathrm{~g} / \mathrm{mol}=0.02922 \mathrm{~mol} \\
& q=0.2922 \mathrm{~mol}\left(-5.65 \times 10^{3} \mathrm{~kJ} / \mathrm{mol}\right)=-165.1 \mathrm{~kJ}
\end{aligned}
$$

3. If all of the energy in question 2 were used to heat 1.0 L of water at $22.0^{\circ} \mathrm{C}$, what would the final temperature of the water be? (Assume 100\% energy transfer to the water.)

$$
\begin{aligned}
q_{\mathrm{comb}} & =-q_{\mathrm{H}_{2} \mathrm{O}} \\
-165.1 \times 10^{3} \mathrm{~J} & =-1000 \mathrm{~g}\left(4.184 \frac{\mathrm{~J}}{\mathrm{~g} \cdot \mathrm{C}}\right)\left(T_{\mathrm{f}}-22.0^{\circ} \mathrm{C}\right) \\
T_{\mathrm{f}}-22.0^{\circ} \mathrm{C} & =39.46^{\circ} \mathrm{C} \\
T_{\mathrm{f}} & =61.5^{\circ} \mathrm{C}
\end{aligned}
$$

4. Using standard enthalpies of reaction, calculate the ΔH° for the following reactions:

$$
\mathrm{C}_{2} \mathbf{H}_{2(\mathrm{~g})}+2 \mathrm{H}_{2(\mathrm{~g})} \rightarrow \mathrm{C}_{2} \mathbf{H}_{6(\mathrm{~g})}
$$

$$
\begin{array}{rlrl}
\mathrm{C}_{2} \mathrm{H}_{2}(\mathrm{~g})+\frac{5}{2} \mathrm{O}_{2}(\mathrm{~g}) & \rightarrow 2 \mathrm{CO}_{2}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) & \Delta H^{\circ}=-1299.4 \mathrm{~kJ} \\
2 \mathrm{C}(\mathrm{~s})+3 \mathrm{H}_{2}(\mathrm{~g}) & \rightarrow \mathrm{C}_{2} \mathrm{H}_{6}(\mathrm{~g}) & \Delta H^{\circ}=-84.7 \mathrm{~kJ} \\
2 \mathrm{CO}_{2}(\mathrm{~g}) & \rightarrow 2 \mathrm{C}(\mathrm{~s})+2 \mathrm{O}_{2}(\mathrm{~g}) & \Delta H^{\circ}=2(393.5 \mathrm{~kJ}) \\
\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) & \rightarrow \mathrm{H}_{2}(\mathrm{~g})+1 / 2 \mathrm{O}_{2}(\mathrm{~g}) & \Delta H^{\circ}=285.8 \mathrm{~kJ} \\
\hline
\end{array}
$$

$$
\mathrm{C}_{2} \mathrm{H}_{2(\mathrm{~g})}+2 \mathrm{H}_{2(\mathrm{~g})} \rightarrow \mathrm{C}_{2} \mathrm{H}_{6(\mathrm{~g})}
$$

$$
\Delta H^{\circ}{ }_{\mathrm{rxn}}=-311.3 \mathrm{~kJ}
$$

$$
2 \mathbf{C H}_{4(\mathrm{~g})}+\frac{1}{2} \mathbf{O}_{2(\mathrm{~g})} \rightarrow \mathbf{C}_{2} \mathbf{H}_{6(\mathrm{~g})}+\mathbf{H}_{\mathbf{2}} \mathbf{O}_{(\mathrm{l})}
$$

$$
\begin{array}{rlrl}
2 \mathrm{CH}_{4}(\mathrm{~g}) & +4 \mathrm{O}_{2}(\mathrm{~g}) & \rightarrow 2 \mathrm{CO}_{2}(\mathrm{~g})+4 \mathrm{H}_{2} \mathrm{O}(\mathrm{l}) & \Delta H^{\circ}=2(-890.4 \mathrm{~kJ}) \\
2 \mathrm{C}(\mathrm{~s})+3 \mathrm{H}_{2}(\mathrm{~g}) & \rightarrow \mathrm{C}_{2} \mathrm{H}_{6}(\mathrm{~g}) & \Delta H^{\circ}=-84.7 \mathrm{~kJ} \\
2 \mathrm{CO}_{2}(\mathrm{~g}) & \rightarrow 2 \mathrm{C}(\mathrm{~s})+2 \mathrm{O}_{2}(\mathrm{~g}) & \Delta H^{\circ}=2(393.5 \mathrm{~kJ}) \\
3 \mathrm{H}_{2} \mathrm{O}(\mathrm{l}) & \rightarrow 2 \mathrm{H}_{2}(\mathrm{~g})+\frac{3}{2} \mathrm{O}_{2}(\mathrm{~g}) & \Delta H^{\circ}=3(285.8 \mathrm{~kJ})
\end{array}
$$

$$
2 \mathrm{CH}_{4(\mathrm{~g})}+\frac{1}{2} \mathrm{O}_{2(\mathrm{~g})} \rightarrow \mathrm{C}_{2} \mathrm{H}_{6(\mathrm{~g})}+\mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})}
$$

$$
\Delta H_{\mathrm{rxn}}^{\circ}=-221.1 \mathrm{~kJ}
$$

