Mass, Atoms, Moles, Density: An Integrative Problem

The German chemist Fritz Haber proposed paying off the reparations imposed against Germany in World War I by extracting gold from seawater. Given that (1) the amount of reparations was 28.8 billion dollars, (2) the value of gold at the time was about $\$ 21.25$ per troy ounce (1 troy ounce $=$ 31.103 g), and (3) gold occurs in seawater to the extent of 4.67×10^{17} atoms per ton of seawater (1 ton $=2000 \mathrm{lb}$), how many cubic kilometers of seawater would have had to be processed to obtain the required amount of gold? Assume that the density of seawater is $1.03 \mathrm{~g} / \mathrm{cm}^{3}$.

Solution:

Start by determining the mass of Au necessary for the reparations:

$$
\begin{aligned}
& m=28.8 \times 10^{9} \text { dollars } / 21.25 \frac{\text { dollars }}{\text { troy }}=1.3553 \times 10^{9} \text { troy Au } \\
& m=1.3553 \times 10^{9} \text { troy } \mathrm{Au} \times \frac{31.103 \mathrm{~g}}{\text { troy }}=4.2151 \times 10^{10} \mathrm{~g} \mathrm{Au}
\end{aligned}
$$

Calculate the concentration of Au in seawater:

The mass of seawater necessary to get the require amount of Au is

$$
m_{\text {seawater }}=4.2151 \times 10^{10} \mathrm{~g} \mathrm{Au} \times \frac{\text { ton seawater }}{1.5275 \times 10^{-4} \mathrm{~g} \mathrm{Au}}=2.7597 \times 10^{14} \text { ton seawater }
$$

The volume of seawater is calculated using density:

$$
\begin{aligned}
V_{\text {seawater }} & =2.7597 \times 10^{14} \text { ton seawater } \times 2000 \frac{\mathrm{lb}}{\text { ton }} \times 453.6 \frac{\mathrm{~g}}{\mathrm{lb}} \times \frac{1 \mathrm{~cm}^{3} \text { seawater }}{1.03 \mathrm{~g} \text { seawater }} \times\left(\frac{1 \mathrm{~m}}{100 \mathrm{~cm}}\right)^{3} \times\left(\frac{1 \mathrm{~km}}{1000 \mathrm{~m}}\right)^{3} \\
& =2.43 \times 10^{5} \mathrm{~km}^{3}
\end{aligned}
$$

