Saturated and Unsaturated Solutions

Problem 2-63
A solution is prepared by dissolving 2.50 g potassium chlorate (a substance used in fireworks and flares) in 100.0 mL water at $40^{\circ} \mathrm{C}$. When the solution was cooled to $20^{\circ} \mathrm{C}$, its volume was found to still be 100.0 mL , but some of the potassium chlorate had crystallized (deposited from the solution as a solid). At $40^{\circ} \mathrm{C}$, the density of water is $0.9922 \mathrm{~g} / \mathrm{mL}$, and at $20^{\circ} \mathrm{C}$ the potassium chlorate solution had a density of $1.0085 \mathrm{~g} / \mathrm{mL}$.
(a) Estimate, to two significant figures, the mass of potassium chlorate that crystallized.
(b) Why can't the answer in (a) be given more precisely?

Solution:
One key to this problem is realizing that the mass of water remains unchanged even though the volume of the water and solution does.
$m_{\mathrm{H}_{2} \mathrm{O}, 40^{\circ} \mathrm{C}}=100.0 \mathrm{~mL} \times 0.9922 \frac{\mathrm{~g}}{\mathrm{~mL}}=99.22 \mathrm{~g} \mathrm{H}_{2} \mathrm{O}$
$m_{\text {soln }, 20^{\circ} \mathrm{C}}=100.0 \mathrm{~mL} \times 1.0085 \frac{\mathrm{~g}}{\mathrm{~mL}}=100.85 \mathrm{~g}$ solution

The mass of water remains unchanged. The mass of the solution is the sum of the mass of the water and potassium chlorate.
$m_{\mathrm{KClO}_{3} \text { in solution }}=100.85 \mathrm{~g}$ solution $-99.22 \mathrm{~g} \mathrm{H}_{2} \mathrm{O}=1.63 \mathrm{~g} \mathrm{KClO}_{3}$
$m_{\mathrm{KClO}_{3} \text { crystallized }}=2.50 \mathrm{~g}-1.63 \mathrm{~g}=0.87 \mathrm{~g}$

The precision is poor compared to all of the other measurements due to the loss of significant figures in the subtraction.

