Isotopic Abundance

Problem 2-41

The two naturally occurring isotopes of silver have the following abundances: ¹⁰⁷Ag, 51.84%; ¹⁰⁹Ag, 48.16%. The mass of ¹⁰⁷Ag is 106.905092 u. What is the mass of ¹⁰⁹Ag?

Solution:

Recall the calculation for weighted-average atomic mass, WAAM:

WAAM = abundance₁ × AM_1 + abundance₂ × AM_2 + ···

All periodic table masses are measured from the naturally occurring elements so they are necessarily weight-average atomic masses. Looking up the atomic mass of Ag on the periodic table gives 107.868 u.

Now, just fill in the blanks...

107.868 u = 0.5184×106.905092 u + $0.4816 \times AM_{109}_{Ag}$ $0.4816 \times AM_{109}_{Ag} = 52.44840$ u $AM_{109}_{Ag} = 108.9045$ u If you're worrying about significant figures in this problem: $AM_{109}_{Ag} = 108.90$ u or 108.9 u