More Unit Conversions

1. What is the mass of 1 quart of water $(1 \mathrm{~L}=1.057$ quarts $)$?

$$
m=1 \mathrm{qt} \times \frac{1 \mathrm{~L}}{1.057 \mathrm{qt}} \times 1000 \frac{\mathrm{~mL}}{\mathrm{~L}} \times 1.00 \frac{\mathrm{~g}}{\mathrm{~mL}}=946.1 \mathrm{~g} \mathrm{H}_{2} \mathrm{O}
$$

2. What is the mass of 1 quart of mercury ($1 \mathrm{~L}=1.057$ quarts)?

$$
m=1 \mathrm{qt} \times \frac{1 \mathrm{~L}}{1.057 \mathrm{qt}} \times 1000 \frac{\mathrm{~mL}}{\mathrm{~L}} \times 13.53 \frac{\mathrm{~g}}{\mathrm{~mL}}=12,800 \mathrm{~g} \mathrm{Hg}=1.28 \times 10^{4} \mathrm{~g}
$$

3. Convert each of the following into SI units:
a. engine displacement of 454 cubic inches

$$
\text { Displacement }=454 \operatorname{in}^{3} \times\left(\frac{2.54 \mathrm{~cm}}{\text { in }}\right)^{3}=7440 \mathrm{~cm}^{3}=7.44 \mathrm{~L}
$$

b. car speed of 35 mph

$$
\text { speed }=35 \frac{\mathrm{mi}}{\mathrm{~h}} \times \frac{1 \mathrm{~h}}{60 \mathrm{~min}} \times \frac{1 \mathrm{~h}}{60 \mathrm{~s}} \times \frac{5280 \mathrm{ft}}{1 \mathrm{mi}} \times \frac{12 \mathrm{in}}{1 \mathrm{ft}} \times \frac{2.54 \mathrm{~cm}}{1 \mathrm{in}} \times \frac{1 \mathrm{~m}}{100 \mathrm{~cm}}=16 \mathrm{~m} / \mathrm{s}
$$

c. height of 6 feet 9 inches

$$
\begin{aligned}
& h=6 \mathrm{ft}+9 / 12 \mathrm{ft}=6.75 \mathrm{ft} \\
& h=6.75 \mathrm{ft} \times 12 \frac{\mathrm{in}}{\mathrm{ft}} \times 0.0254 \frac{\mathrm{~m}}{\mathrm{in}}=2.06 \mathrm{~m}
\end{aligned}
$$

d. boulder mass of 227 pounds.

$$
m=227 \mathrm{lb} \times \frac{0.453 \mathrm{~kg}}{1 \mathrm{lb}}=103 \mathrm{~kg}
$$

e. gold nugget mass of 1.5 ounces

$$
m=1.5 \mathrm{oz} \times \frac{28.3495 \mathrm{~g}}{\mathrm{oz}} \times \frac{1 \mathrm{~kg}}{1000 \mathrm{~g}}=0.043 \mathrm{~kg}
$$

f. light speed of $6.71 \times 10^{8} \mathrm{mph}$

$$
c=6.71 \times 10^{8} \frac{\mathrm{mi}}{\mathrm{~h}} \times \frac{1 \mathrm{~h}}{3600 \mathrm{~s}} \times \frac{1609.3 \mathrm{~m}}{1 \mathrm{mi}}=3.00 \times 10^{8 \mathrm{~m} / \mathrm{s}}
$$

g. hike length of 11 miles

$$
l=11 \mathrm{mi} \times \frac{1609.3 \mathrm{~m}}{\mathrm{mi}}=17702 \mathrm{~m}=1.8 \times 10^{4} \mathrm{~m}
$$

h. car mileage of 32 miles/gallon.

$$
\text { mileage }=32 \frac{\mathrm{mi}}{\mathrm{gal}} \times \frac{1609.3 \mathrm{~m}}{1 \mathrm{mi}} \times \frac{1 \mathrm{gal}}{4 \mathrm{qt}} \times \frac{1 \mathrm{qt}}{1.057 \mathrm{~L}}=12,180 \frac{\mathrm{~m}}{\mathrm{~L}}=1.2 \times 10^{4} \frac{\mathrm{~m}}{\mathrm{~L}}
$$

