Dimensional Analysis Example Density Problem

The density of lead is $11.34 \mathrm{~g} / \mathrm{mL}$. What Is the density of lead in pounds per cubic foot? Could you easily lift a 1.25 cubic foot block of lead? (Hint: calculate the weight of 1.25 cubic feet of Pb.)

Have:
$d=11.34 \mathrm{~g} / \mathrm{mL}^{2}=11.34 \mathrm{~g} / \mathrm{cm}^{3}$
$V=1.25 \mathrm{ft}^{3}$
Need: density in $\mathrm{lb} / \mathrm{ft}^{3}$
Conversions:

$$
\begin{aligned}
& 1 \mathrm{lb}=453.6 \mathrm{~g} \\
& 1 \mathrm{in}=2.54 \mathrm{~cm} \\
& 12 \mathrm{in}=1 \mathrm{ft}
\end{aligned}
$$

Calculate:
$d=11.34 \frac{\not q}{\mathrm{~cm}^{3}} \times \frac{1 \mathrm{lb}}{453.6 \not g^{\prime}}=0.02500 \frac{\mathrm{lb}}{\mathrm{cm}^{3}}$
$d=0.02500 \frac{\mathrm{lb}}{\mathrm{cm}^{3}} \times\left(\frac{2.54 \mathrm{~cm}}{1 \mathrm{in}}\right)^{3} \times\left(\frac{12 \mathrm{in}}{1 \mathrm{ft}}\right)^{3}=707.9 \frac{\mathrm{lb}}{\mathrm{ft}^{3}}$
Alternatively:
$d=11.34 \frac{\mathrm{q}}{\mathrm{cm}^{3}} \times \frac{1 \mathrm{lb}}{453.6 \mathrm{~g}} \times\left(\frac{2.54 \mathrm{~cm}}{1 \mathrm{in}}\right)^{3} \times\left(\frac{12 \mathrm{in}}{1 \mathrm{ft}}\right)^{3}=707.9 \frac{\mathrm{lb}}{\mathrm{ft}^{3}}$

Now for the second part... can you lift $1.25 \mathrm{ft}^{3}$ of lead?
Set it up dimensionally to cancel units:
$m_{\mathrm{Pb}}=707.9 \frac{\mathrm{lb}}{\mathrm{ft}^{3}} \times 1.25 \mathrm{ft}^{3}=884.9 \mathrm{lb}=885 \mathrm{lb}$ (with correct SF)

