HANDOUT SET

GENERAL CHEMISTRY I

	1 IA	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18 VIIIA
1	\mathbf{H}																	² He
	1.00794	IIA											IIIA	IVA	VA	VIA	VIIA	4.00262
[3	4											5	6	7	8	9	10
2	Li	Be											B	C	Ν	0	F	Ne
	6.941	9.0122											10.811	12.011	14.0067	15.9994	18.9984	20.179
	11	12											13	14	15	16	17	18
3	Na	Mg											Al	Si	P	S	Cl	Ar
	22.9898	24.305	IIIB	IVB	VB	VIB	VIIB		VIIIB		IB	IIB	26.98154	28.0855	30.97376	32.066	35.453	39.948
Ī	19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
4	Κ	Ca	Sc	Ti	V	Cr	Mn	Fe	Со	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
	39.0983	40.078	44.9559	47.88	50.9415	51.9961	54.9380	55.847	58.9332	58.69	63.546	65.39	69.723	72.59	74.9216	78.96	79.904	83.80
	37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
5	Rb	Sr	Y	Zr	Nb	Mo	Tc	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Te	Ι	Xe
	85.4678	87.62	88.9059	91.224	92.9064	95.94	(98)	101.07	102.9055	106.42	107.8682	112.41	114.82	118.710	121.75	127.60	126.9045	131.29
	55	56	57	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86
6	Cs	Ba	La*	Hf	Ta	\mathbf{W}	Re	Os	Ir	Pt	Au	Hg	Tl	Pb	Bi	Po	At	Rn
	132.9054	137.34	138.91	178.49	180.9479	183.85	186.207	190.2	192.22	195.08	196.9665	200.59	204.383	207.2	208.9804	(209)	(210)	(222)
_	87	88	89	104	105	106	107	108	109	110	111	112						
/	Fr	Ra	Ac**	Rf	Db	Sg	Bh	Hs	Mt			***						
	(223)	226.0254	227.0278	(261)	(262)	(263)	(264)	(265)	(266)	(270)	(272)	(277)						
			_															
	*Lanthanide		inthanides	58	59	60	61	62	63	64	65	66	67	68	69	70	71	
				Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Ho	Er	Tm	Yb	Lu	
				140.12	140.9077	144.24	(145)	150.36	151.96	157.25	158.925	162.50	164.930	167.26	168.9342	173.04	174.967	
		**	Actinides	90	91	92	93	94	95	96	97	98	99	100	101	102	103	
				Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr	
			L	232.038	231.0659	238.0289	237.0482	(244)	(243)	(247)	(247)	(251)	(252)	(257)	(258)	(259)	(260)	

Periodic Table of the Elements

Mass numbers in parenthesis are the mass numbers of the most stable isotopes. As of 1997 elements 110-112 have not been named.

***Peter Armbruster and Sigurd Hofman synthesized a single atom at the Heavy-Ion Research Center in Darmstadt, Germany in 1996. The atom survived for 280 μs after which it decayed to element 110 by loss of an α-particle

Chapter 9

The Periodic Table and the Periodic Law

PERIODIC PROPERTIES OF THE ELEMENTS CHAPTER 9

- **INTRODUCTION** Quantum mechanics not only helps to describe and explain the microscopic structure of the atom, it also provides a theoretical basis to describe and explain macroscopic experimentally observed properties of the elements. Just a few of the periodic properties observed are atomic and ionic size, ionization energy, and electronegativity. Many observed chemical reactions can be predicted and explained simply by observing where the elements in the reaction are situated on the periodic table. The periodic table was discussed in some detail earlier in the semester; this chapter is thus mostly review and support for earlier discussion. From this chapter, it is clear that the table devised by Mendeleev without knowledge of quantum mechanics has much deeper theoretical roots than Mendeleev imagined.
 - **GOALS** 1. You should be comfortable with all terms, definitions, and historic figures discussed in the lecture and text. This is a very *descriptive* chapter very few if any calculations are performed.
 - 2. You must understand the periodic properties discussed in lecture and the text and to make predictions based on the properties.
 - 3. The periodic table is divided into regions, blocks, families, periods, and element type. It is important to be able to distinguish each of these features. Study your notes from the earlier chapters.
 - 4. The electronic structure of the atom determines its magnetic properties. You should be able to determine the electronic structure of the atom (chapter 9) and determine its magnetic properties.
 - 5. It is important to know the exceptions to the orbital filling rules and have a basic understanding of why these exceptions exist.
 - 6. Many reactions illustrating the periodic properties have been introduced that you should feel responsible for.

DEFINITIONS Block

Refer to the review sheet for **Chapter 3** in addition to this study sheet. Periodic law Law of Triads Law of Octaves Isoelectronic Special stability Actinides Lanthanides Paramagnetic Diamagnetic Atomic radius Ionic radius Ionization energy Electron affinity Metal oxide Nonmetal oxide Effective nuclear charge

Z_{eff} Valence Kernel Special stability Shielding Electron configuration Noble gas configuration