HANDOUT SET

GENERAL CHEMISTRY I

Periodic Table of the Elements

$\stackrel{1}{1 /}$	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	[18
$\stackrel{\substack{\text { IA } \\ \stackrel{1}{\mathbf{H}} \\ \hline 10794}}{ }$	IIA																He 4.0026
3	4											5	${ }^{6}$	7	8		10
Li	Be											$\underset{\text { B }}{\text { B }}$	C	N	\mathbf{O}	\mathbf{F}	Ne
															16	17	
Na	Mg											Al	Si	P	S	Cl	Ar
22.9898	24.305	IIIB	IvB	vв	vib	VIIB		VIIIB		IB	IIB	26.98154	28.085	30.97376	32.066	35.453	39.448
19	${ }^{20}$	${ }^{21}$	22	${ }^{23}$	24	25	${ }^{26}$	27	${ }^{28}$	29	30	31	32	33	34	35	36
K	Ca	Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
39.098	40.078	44.959	47.88	50.9415	51.961	54.9380	55.847	${ }_{58,9332}$	58.69	63.546	65.39	69.723	72.59	74.9216	78.96	79.904	83.80
37	${ }^{38}$	${ }^{39}$	40	${ }^{41}$	42	${ }^{43}$	44	${ }^{45}$	46	47	48	${ }^{49}$	50	${ }^{51}$			
Rb	Sr	Y	Zr	Nb	Mo	Tc	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Te	I	Xe
85.4678	${ }_{87.62}$	88.959	${ }_{91} 224$	${ }_{92,964}$	95.94	(98)	101.07	102.9055	106.42	107.8682	112.41	114.82	${ }_{118.710}$	${ }_{121.75}$	127.60	126.9045	131.29
55	56	57	72	${ }^{73}$	74	75	76	77	${ }^{78}$	79	80	${ }^{81}$	${ }^{82}$	${ }^{83}$	${ }^{84}$	${ }^{85}$	86
Cs	Ba	La*	Hf	Ta	W	Re	Os	Ir	Pt	Au	Hg	TI	Pb	Bi	Po	At	$\mathbf{R n}$
132.9054	${ }_{137.34}$	138.91	178.49	180.9479	183.85	186.207	190.2	192.22	195.08	196.9665	200.59	204.383	207.2	208.9804	(209)	${ }_{(210)}$	Rn
	${ }^{88}$		104	105	106	107	108	109	${ }^{110}$	${ }^{111}$							
Fr	Ra	Ac**	Rf	Db	Sg	Bh	Hs	Mt			***						
(223)			(261)	(262)		(264)	(265)	266	(270)	(272)							

${ }^{\text {a }}$ Lantanides	$\begin{array}{\|c} \hline \stackrel{58}{\mathbf{C e}} \\ { }_{140.12} \end{array}$	$\underset{{ }_{140.907}^{59}}{\mathbf{P r}_{2}^{2}}$	$\underset{i_{144.24}^{\mathbf{N o}}}{\substack{\text { Nd }}}$	$\underset{(145)}{\stackrel{61}{\mathbf{P a}}}$	$\underset{\text { }}{\substack{\mathbf{S}_{60.36}^{62}}}$	$\begin{gathered} \hline 63 \\ \text { Eu } \\ 151.96 \\ \hline \end{gathered}$	$\begin{aligned} & 64 \\ & \text { Gd } \end{aligned}$	$\begin{gathered} \hline 65 \\ \text { Tb } \\ 158.925 \end{gathered}$	$\begin{gathered} 66 \\ \hline \text { Dy } \\ \text { Dy } \end{gathered}$	$\begin{gathered} \hline \mathbf{6 7} \\ \text { He } \\ \hline 16930 \\ \hline \end{gathered}$	$\begin{gathered} \hline 68 \\ \underset{167.26}{\text { Er }} \end{gathered}$	$\underset{\substack{168.9342}}{\substack{69}}$	Yb 173.04	$\begin{gathered} \text { Lu } \\ 174.967 \end{gathered}$
**Actinide					${ }^{94}$						100			
	$\underset{232.038}{\text { Th }}$	$\underset{231.0659}{\text { Pa }}$	$\underset{238.029}{\mathbf{U}}$	$\mathbf{N p}$	$\mathbf{P u}$	Am	$\mathbf{C m}$	Bk	Cf	Es	$\mathbf{F m}$	Md	No	$\underset{(260)}{\mathbf{L r}}$

Mass numbers in parenthesis are the mass numbers of the most stable isotopes. As of 1997 elements 110-112 have not been named.
***Peter Armbruster and Sigurd Hofman synthesized a single atom at the Heavy-Ion Research Center in Darmstadt, Germany in 1996. The atom survived for 280 s after which it decayed to element 110 by loss of an α-particle

Chapter 7

Thermochemistry

THERMOCHEMISTRY
 CHAPTER 7

INTRODUCTION Thermochemistry is a facet of chemistry which combines reaction writing, completion, and balancing with the heat or energy absorbed or released in the chemical reaction. In essence, you might say that the energy in a reaction is a product or reactant normally hidden from the person writing the reaction. This chapter introduces a way to determine both theoretically (Hess's Law) and experimentally (calorimetry) the energy change (enthalpy) in a chemical reaction.

GOALS 1. You must have a working knowledge of all of the terms involved in thermochemistry.
2. You should be able to calculate the amount of heat transferred in a chemical reaction when experimentally measured in a calorimeter.
3. Hess's Law allows for the calculation of $\Delta \mathrm{H}$ of a reaction without performing an experiment. You should be able to do Hess's law calculations.

DEFINITIONS
You should have a working knowledge of at least these terms and any others used in lecture.

Energy
Heat
Enthalpy
Endothermic
Exothermic
Calorimetry
Calorimeter
Specific heat

Heat capacity
Open system
Closed system
Isolated system
Heat of reaction
Enthalpy of reaction
System
Surroundings

Standard state
Work
Joule
First law of thermodynamics

Thermochemistry I: Energy Transfer and Calorimetry

1. What amount of work (in J) is performed on the surroundings when a 1.0 L balloon at 745 mm Hg at $25^{\circ} \mathrm{C}$ is heated to $45^{\circ} \mathrm{C}$? ($\left.1 \mathrm{Latm}=101.325 \mathrm{~J}\right)$
2. What quantity of heat (in J) is necessary to raise 3.00 L of water ($d=1.00 \mathrm{~g} / \mathrm{mL}$) from $22.0^{\circ} \mathrm{C}$ to $63.0^{\circ} \mathrm{C}$?
3. A 200.0 mL quantity of 0.40 M HCl was added to 200.0 mL of 0.40 M NaOH in a solution (constant pressure) calorimeter. The temperature of each solution was $25.10^{\circ} \mathrm{C}$ before mixing. After mixing the solution rose to a temperature of $26.60^{\circ} \mathrm{C}$ before beginning to cool. The heat capacity of the calorimeter was determined by separate experiment to be $55 \mathrm{~J} /{ }^{\circ} \mathrm{C}$. What is ΔH_{rxn} per mol of $\mathrm{H}_{2} \mathrm{O}$ formed? Assume the solutions have a density of $1.00 \mathrm{~g} / \mathrm{mL}$ and their specific heats are similar to water; $c=4.18 \mathrm{~J} / \mathrm{g}^{\circ} \mathrm{C}$.
4. A 1.00 g sample of table sugar (sucrose, $\mathrm{C}_{12} \mathrm{H}_{22} \mathrm{O}_{11}$) was burned in a bomb calorimeter (constant volume calorimeter) containing 1.50 kg of water. The temperature of the water in the calorimeter rose from $25.00^{\circ} \mathrm{C}$ to $27.32^{\circ} \mathrm{C}$. What is the $\Delta H_{\text {combustion }}$ of sucrose in kJ / g and $\mathrm{kJ} / \mathrm{mol}$? The heat capacity of the calorimeter was determined by separate experiment to be $837 \mathrm{~J} /{ }^{\circ} \mathrm{C}$.
5. Camphor $\left(\mathrm{C}_{10} \mathrm{H}_{16} \mathrm{O}\right)$ has a $\Delta H_{\text {combustion }}$ of $-5903.6 \mathrm{~kJ} / \mathrm{mol}$. A 0.7610 g sample of camphor was burned in a bomb calorimeter containing $2.00 \times 10^{3} \mathrm{~g}$ of water. The temperature of the water increased from $22.78^{\circ} \mathrm{C}$ to $25.06^{\circ} \mathrm{C}$. What is the heat capacity of the calorimeter?

Determination of the Specific Heat of Copper Metal

Data

$$
q_{\mathrm{Cu}}+q_{\mathrm{H} 2 \mathrm{O}}+q_{\mathrm{cal}}=0
$$

Thermochemistry II: Calorimetry, Enthalpy, and Hess' Law

1. When 100.0 mL of 1.00 M HCl is mixed with 100.0 mL of 1.00 M NaOH , both initially at $21.1^{\circ} \mathrm{C}$, are mixed in a two-cup calorimeter the temperature of the mixture rises to $27.9^{\circ} \mathrm{C}$. Determine the ΔH of neutralization for the reaction

$$
\mathrm{HCl}_{(\mathrm{aq})}+\mathrm{NaOH}_{(\mathrm{aq})} \rightarrow \mathrm{NaCl}_{(\mathrm{aq})}+\mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})}
$$

By a prior experiment, the heat capacity of the calorimeter was determined to be $125 \mathrm{~J} /{ }^{\circ} \mathrm{C}$. Assume the density of the final solution is $1.0 \mathrm{~g} / \mathrm{mL}$ and the specific heat of the mixture is $4.18 \mathrm{~J} / \mathrm{g}^{\circ} \mathrm{C}$.
2. Consider the reaction

$$
\mathrm{C}_{12} \mathrm{H}_{22} \mathrm{O}_{11(\mathrm{~s})}+12 \mathrm{O}_{2(\mathrm{~g})} \rightarrow 12 \mathrm{CO}_{2(\mathrm{~g})}+11 \mathrm{H}_{2} \mathrm{O}_{(\mathrm{g})}
$$

which has a ΔH of $-5.65 \times 10^{3} \mathrm{~kJ} / \mathrm{mol}\left(\mathrm{C}_{12} \mathrm{H}_{22} \mathrm{O}_{11}\right)$. How much heat (energy) can be produced during the complete combustion of 100.0 g of sucrose?
3. If all of the energy in question 2 were used to heat 1.0 L of water at $22.0^{\circ} \mathrm{C}$, what would the final temperature of the water be? (Assume 100% energy transfer to the water.)
4. Using standard enthalpies of reaction, calculate the ΔH° for the following reactions:

$$
\mathrm{C}_{2} \mathrm{H}_{2(\mathrm{~g})}+2 \mathrm{H}_{2(\mathrm{~g})} \rightarrow \mathrm{C}_{2} \mathrm{H}_{6(\mathrm{~g})}
$$

$$
2 \mathbf{C H}_{4(\mathrm{~g})}+\frac{1}{2} \mathbf{O}_{2(\mathrm{~g})} \rightarrow \mathbf{C}_{2} \mathbf{H}_{\mathbf{6}(\mathrm{g})}+\mathbf{H}_{2} \mathbf{O}_{(\mathrm{l})}
$$

$$
\begin{aligned}
& \mathrm{C}_{(\mathrm{s})}+2 \mathrm{H}_{2(\mathrm{~g})} \rightarrow \mathrm{CH}_{4(\mathrm{~g})} \\
& 2 \mathrm{C}_{(\mathrm{s})}+3 \mathrm{H}_{2(\mathrm{~g})} \rightarrow \mathrm{C}_{2} \mathrm{H}_{6(\mathrm{~g})} \\
& \mathrm{C}_{(\mathrm{s})}+\mathrm{O}_{2(\mathrm{~g})} \rightarrow \mathrm{CO}_{2(\mathrm{~g})} \\
& \mathrm{CH}_{4(\mathrm{~g})}+2 \mathrm{O}_{2} \rightarrow \mathrm{CO}_{2(\mathrm{~g})}+2 \mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})} \\
& \mathrm{C}_{2} \mathrm{H}_{2(\mathrm{~g})}+\frac{5}{2} \mathrm{O}_{2(\mathrm{~g})} \rightarrow 2 \mathrm{CO}_{2(\mathrm{~g})}+\mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})} \\
& \mathrm{H}_{2(\mathrm{~g})}+\frac{1}{2} \mathrm{O}_{2(\mathrm{~g})} \rightarrow \mathrm{H}_{2} \mathrm{O}_{(\mathrm{g})} \\
& \mathrm{H}_{2(\mathrm{~g})}+\frac{1}{2} \mathrm{O}_{2(\mathrm{~g})} \rightarrow \mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})} \\
& \mathrm{Na}_{(\mathrm{s})} \rightarrow \mathrm{Na}_{(\mathrm{g})} \\
& \mathrm{Na}_{(\mathrm{g})} \rightarrow \mathrm{Na}_{(\mathrm{g})}+\mathrm{e}^{-} \\
& 2 \mathrm{Na}_{(\mathrm{s})}+\frac{1}{2} \mathrm{O}_{2(\mathrm{~g})} \rightarrow \mathrm{Na}_{2} \mathrm{O}_{(\mathrm{s})} \\
& \mathrm{Na}_{(\mathrm{s})}+\frac{1}{2} \mathrm{O}_{2(\mathrm{~g})}+\frac{1}{2} \mathrm{H}_{2(\mathrm{~g})} \rightarrow \mathrm{NaOH}_{(\mathrm{s})}
\end{aligned}
$$

