

1

SUN

How do astronomers think it got started?

- A nebula in the ISM
- Temp = 100 K
 Density 10 particles/cm³ (H₂O 10²³ molecules/cm³)
 Diameter of gas cloud destined to be the star = ~10¹⁴ km
 A shock wave from a passing star or distant supernova initiates condensation
 - Core temp increases to 50,000 K due to Kelvin-Helmholtz (compression) heating; Surface temp still only ~500K
 Density increases to ~10¹² particles/cm³
 Diameter = 10¹² km (Recall Sun currently 1.4 × 10⁶ km)

Protostar stage – Over a period of ~10⁷-10⁸y gravitational collapse of the gases results in Kelvin-Helmholtz (compression) heating

- Temp files to 5000 K
 Density in second to 10²² continuous
- > Diameter decreases to 10^{2} km (only 10x bigger than curve
- During gravitational collapse and throughout protostar stage, core continues to heat

SUN: Structure

► Core

► Core

► Opaque

walk

- ► 15,000,000 K
- ► Radiative Zone
 - ► Opaque
 - ► Photon random
 - walk
- ► Convection Zone
- Photosphere

6

6		

SUN: Sunspots

- Cool (4300 K) regions
- Regions of strong magnetic field

Global Oscillation Network Group/BBS

-SUN: Sunspots

- ► Cool (4300 K) regions
- Regions of strong magnetic field
- Come in NS pairs
- 11 year cycle/22 year cycle

