Telescopes	
and the second states are set	
Our Window on the Sky	

		101
Optics		
Divergent	ources produce collimated light at a sufficiently far distance	
		_

Telescope Desi	JIIS
Eyepiece	Newton designed a reflecting telescope in 1668. (In 1672 he invented a reflecting microscope, and some years later he invented the sextan which was rediscovered by J Hadley in 1731.)
Newtonian Reflector	
Newtonian reflectors collect light with a curved mirrer. Their large apertures allow them to serve up fines, highly-resolved images of deep-sky objects and planets alike.	
Courtesy Orion Telescopes and Binoculars	

	^_ _
A Few Obs	
Astronomy in a the electromage	a variety of regions of anetic radiation spectrur
	,
and the second se	

Col Ray	mpton Gamma y Observatory
	Launched April 1991 aboard STS-37
	De-orbited in June, 2000
XAST	The observatory was named in honor of Dr. Arthur Holly Compton, who won the Nobel prize in physics for work on scattering of high-energy photons by electrons.

Chandra	a X-Ra	y Observ	vatory
			C&.
			Series 1
			H-alpha

Chandra X-Ray Observatory			
	Chandra X-ray Observatory image of the SNR DEM L71 reveals a hot inner cloud (aqua) of glowing Fe and SI surrounded by an outer blast wave. Data from the Chandra observations show that the central 10 ⁷ °C cloud is the remains of a supernova explosion that destroyed a white dwarf star.		

onunu	
The correlation	n of the warm and hot filaments suggests that they were
both formed as	s a superwind of gas rushing out from the central
regions of the	galaxy carved a cavity in the cool gas of the galactic
disk. The supe	rwind stripped fragments of gas off the walls of the cavit
stretched then	in into long filaments, and heated them. The full extent of
the superwind	shows up as a fainter conical cloud of X-ray emission
surrounding th	e filaments.
The supervinc	d originates in the center of the galaxy either from activity
generated by a	a central supermassive black hole or by a burst of
supernova act	ivity. Superwinds are thought to play a key role in the
evolution of ga	laxies by regulating the formation of new stars, and by
dispersing hea	ivy elements to the outer parts of the galaxy and beyond
Chandra data	indicate that astronomers may be seriously under-
estimating the	mass lost in superwinds and therefore their influence
within and aro	und the host galaxy.

Jodrell Bank Radio Telescope

Dedicated in 1957 on the Cheshire Plain, the 76-m Jodrell Bank Radio Telescope (Lovelle Telescope) remains among the world's largest fully steerable radio telescopes.

It is the flagship of the Jodrell Bank Observatory (Dept of Physics and Astronomy, University of Manchester). Astronomers here also use X-ray, optical, infrared and mm-wave instruments across the globe and in space to make complementary observations.

Ring Nebula in Visible Light		
	The view of planetary nebula M57 from Earth is looking straight into what is actually a barrel- shaped cloud of gas blown off by a white dwarf central	
Hubble Heritage Team (STScl / AURA), NASA	star.	

