
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$

The facts we know today will be the same tomorrow but today's theories $\qquad$ may tomorrow be obsolete.

A scientific theory is regarded simply as the best model available consistent with the factsures $\qquad$
$\qquad$
$\qquad$

Because the universe is such a big place, we need a really long measuring stick:

Introducing

## The Astronomical Unit

+The Earth is $1.496 \times 10^{8} \mathrm{~km}$ from Sun
+So... $1 \mathrm{AU}=1.496 \times 10^{8} \mathrm{~km}$ (93 million miles) $\qquad$

+ That was easy. $\qquad$
$\qquad$
$\qquad$
$\qquad$


## The Light Year

+Cosmic speed limit: $3.00 \times 10^{8} \mathrm{~m} / \mathrm{s}$ (That's 186,000 miles per second to you and me)

+ Distance can be measured by the length of time the light traveled from an object. $\qquad$
+1 ly is $5,879,000,000,000$ miles or
$9,461,000,000,000 \mathrm{~km}$
$+1 \mathrm{pc}=3.26 \mathrm{ly}$


## Proxima Centauri ( $\alpha$-Centauri)

Our closest stellar neighbor

$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$

$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$

$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$

$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$

$\qquad$


As much as we know about the moon, we still don't know where it came from!
$\qquad$

$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$

$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$

$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$

As we leave the inner solar
system we encounter the

Gas Giant Planets
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$

$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$

$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$

Jupiter
4 Great Red Spot 4 large moons, at least 63 satellites, 49 named
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$

$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$

$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$

$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$+$
We, finally leave our splar system

Next stop... THE STARS
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$

Well, perhaps not our next stop!
\& $\alpha$-Centauri only 4.2 ly away
\& Nearly 10,000 years to get there even at $100,000 \mathrm{mph}$ !
\& Sirius ( 8.7 ly) is brightest and blue
$\qquad$
\& Betelgeuse (500 ly) 10 ${ }^{\text {th }}$ brightest and
$\star$ Most stars we see are at most a few 1000 ly

$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$

$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$

$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$

Are there planets around other stars?

Probably!
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$

$\qquad$

What happens to old stars?
$\qquad$
$\qquad$
$\star$ White dwarfs and planetary nebula (<1.5 ○)
$\star$ Neutron stars and pulsars (~3-5 ○)
$\star$ Black holes (>5 ○)
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$

Ring Nebúla, M57
The Death . of a Star $\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$

The Crab Nebula, M1
The Death of a Star
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$

Globular Clusters $\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$

Is our place in the universe unique?

Galileo showed that we were not at the center of the solar system.

Since then, observations show...
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$

$\qquad$
$\qquad$

$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$

The Universe, as has been observed before, is an unsettlingly big place, a fact which for the sake of a quiet life most people tend to ignore.

Douglas Adams,
The Restaurant at the End of the Universe

$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$

$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$

So... how did it all start?
We think it started from the expansion of a small point of extreme energy $\qquad$ (the primordial singularity).

$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$

$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
2.7 K Cosmic Background
*Predicted by Gamow in 1940 .湔Discovered serendipitously by Penzias and Wilson in 1965.
*Mapped with 70,000,000 $\qquad$
measurements by COBE in 1990 s.
$\qquad$

* Doppler shift is like the sound of a siren as it approaches and passes. $\qquad$
* Discovered by Edwin Hubble in 1929 and verified on 1000s of galaxies since.
* Red-shifted spectral lines from galaxies show that the celestial object is moving away from us. (Space-time is expanding)
* Recession velocity is calculable.
* Red-shift is determined by the distance the object is away (and vice versa).


## Other Evidence of the Big Bang

* Quasars (billions ly away) with look-back times of $95+\%$ the age of the universe.
* Newly discovered gravitational lensing (predicted by Einstein).
* Dark matter (matter too cool to emit energy) $\qquad$
* Atom ratio of H to He
$\qquad$
$\qquad$
$\qquad$

Cosmology points to and we conclude that... $\qquad$

* The universe is extraordinarily big. $\qquad$
* The universe is expanding.
* The universe is very old.
* The universe had a beginning.
$\qquad$
$\qquad$
$\qquad$
$\qquad$

$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$

