Telescopes A Fundamental Tool of the Astronomer

1. Diagram the optical devices which can focus collimated light to a point.

- 2. What are the advantages and disadvantages of a
 - a. refracting telescope Advantage: highest optical contrast of all designs Disadvantage: highest cost per mm aperture of all designs even small apertures produce long optical tube assemblies (OTAs) chromatic aberration can be minimized but not avoided

b. reflecting telescope

i) Newtonian configuration

Advantage: Lowest cost per mm aperture of all designs No chromatic aberration Simple to design and construct, even for amateurs Disadvantage: Not as optically contrasty due to central obstruction

Disadvantage: Not as optically contrasty due to central obstruction from secondary mirror OTA nearly as long as focal length eyepiece may be uncomfortably high when pointed at zenith; eyepiece may be in awkward position when pointing either east or west.

- ii) Schmidt configuration (Schmidt-Cassegrain, Schmidt-Maksutov)
- Advantage:No chromatic aberration
Eyepiece usually in convenient location except when pointing directly north (when
equatorially mounted)
Long focal lengths available in short OTA due to folded light pathDisadvantage:Difficult (expensive) to figure mirror with central perforation
Not as optically contrasty due to central obstruction from secondary mirror
- 3. a. What is the improvement in light-gathering power (LGP) of a 125 mm (5") telescope over the dark adapted human eye (~5 mm aperture)? $LGP \propto Area \text{ of aperture } \propto r^2$

 $\frac{A_{125}}{A_{eye}} = \text{improvement} = \frac{(62.5 \text{mm})^2}{(5 \text{mm})^2} = 625 \times \text{ more LGP}$

b. What is the improvement in LGP of a 30 cm (12") telescope over a 25 cm (10") telescope?

$$\frac{A_{12''}}{A_{10''}} = \text{improvement} = \frac{(15\text{cm})^2}{(12.5\text{cm})^2} = 1.44 \times \text{ more LGP (that's 144\% more LGP)}$$

- 4. What is the Dawes Limit (diffraction limited angular resolution) at 600 nm of
 - a. a 125 mm (5") apochromatic refracting telescope?

 $\lambda = 600 \text{ nm} \times \frac{10^{-9} \text{ m}}{\text{nm}} = 6.00 \times 10^{-7} \text{ m} \qquad D = 125 \text{ mm} \times \frac{10^{-3} \text{ m}}{\text{mm}} = 0.125 \text{ m}$ Resolution(arcsec), $R = 2.5 \times 10^5 \frac{\lambda}{D}$ $R = 2.5 \times 10^5 \frac{6.00 \times 10^{-7} \text{ m}}{0.125 \text{ m}} = 1.2 \text{ arcsec}$

b. a 30 cm (12") Schmidt-Cassegrain telescope?

$$D = 30 \text{ cm} \times \frac{10^{-2} \text{m}}{\text{mm}} = 0.3 \text{ m}$$
$$R = 2.5 \times 10^{5} \frac{6.00 \times 10^{-7} \text{ m}}{0.3 \text{ m}} = 0.5 \text{ arcsec}$$

c. the Hubble telescope (2.4 m aperture)?

$$R = 2.5 \times 10^5 \frac{6.00 \times 10^{-7} \text{ m}}{2.4 \text{ m}} = 0.0625 \text{ arcsec}$$

5. What is the advantage of long-baseline interferometry in radioastronomy?

Increases resolution of the radio observation (unfortunately, without increasing LGP)

6. Could the advantage of long-baseline interferometry be exploited in optical astronomy?

Yes, and it is being used in the four 8.2 m telescopes of the Very Large Telescope at Cerro Paranal, Chile.

7. a. What is the Dawes Limit for a single radio telescope 25 m (82') in diameter operating at 21 cm? $\lambda = 21 \text{ cm} \times \frac{10^{-2} \text{ m}}{\text{ mm}} = 0.21 \text{ m}$

$$R = 2.5 \times 10^5 \frac{0.21 \text{ m}}{25 \text{ m}} = 2100 \text{ arcsec}$$

Notice that the resolution is extremely poor (over 0.5°-about the angular width of the moon). This is a limitation of radio telescopes.

b. What is the Dawes Limit for the Very Large Array (VLA) where the 27 telescopes are arrayed at a maximum distance of 21 km?

$$R = 2.5 \times 10^5 \frac{0.21 \text{ m}}{21000 \text{ m}} = 2.5 \text{ arcsec}$$

The 21 km VLA has about the same resolution as a 60 mm (2.5") optical telescope

c. What is the resolution of two radio telescopes separated by 8000 km of baseline and operating at 21 cm?
(0.00656 arcsec)