Celestial Mechanics
 Solutions

Example 2:

What is the distance from the surface of the Earth of a geosynchronous satellite? A geosynchronous satellite has a period that exactly equals the Earth's sidereal day ($23 \mathrm{~h} 56 \mathrm{~min} 4 \mathrm{~s}=23.93 \mathrm{~h}$).

Use Newton's modification of Kepler's $3^{\text {rd }}$ law. Since the satellite has a miniscule mass compared to the Earth, the combined mass of the Earth and the satellite is just the mass of the Earth. The period of revolution is 23.93 h .
$m=5.974 \times 10^{24} \mathrm{~kg}$
$P=23.93 \mathrm{~h} \times 3600 \mathrm{~s} / \mathrm{h}=86,148 \mathrm{~s}$
$G=6.6726 \times 10^{-11} \mathrm{~N} \cdot \mathrm{~m}^{2} / \mathrm{kg}^{2}$
Equatorial diameter of Earth $=12,756 \mathrm{~km}$
Equatorial radius of Earth $=\frac{12756 \mathrm{~km}}{2} \times 1000 \frac{\mathrm{~m}}{\mathrm{~km}}=6.378 \times 10^{6} \mathrm{~m}$
$P^{2}=\left(\frac{4 \pi^{2}}{G\left(m_{1}+m_{2}\right)}\right) a^{3}$
$86148^{2}=\left(\frac{4 \pi^{2}}{6.6726 \times 10^{-11} \frac{\mathrm{~N}^{2}}{\mathrm{~kg}^{2}}\left(5.974 \times 10^{24} \mathrm{~kg}\right)}\right) a^{3}$
$a=\sqrt[3]{7.4936 \times 10^{22}}=4.216 \times 10^{7} \mathrm{~m}$
But this is the distance from the center of the Earth. Subtract the distance from the center of the Earth to the surface:
$d=4.216 \times 10^{7} \mathrm{~m}-6.378 \times 10^{6} \mathrm{~m}=3.578 \times 10^{7} \mathrm{~m}$
in kilometers: $d=35,780 \mathrm{~km}$
(The answer differs from the handout only because of differences in rounding intermediate answers.)

Example 3:

Accurately determine the mass of the Sun using only the following planetary and planetary satellite data.
Jupiter

Synodic period:
Average Distance from Sun
Callisto (outermost large moon of Jupiter)
Average distance from center of Jupiter: $1,883,000 \mathrm{~km}$
Orbital period (sidereal):
398.9 days
$7.783 \times 10^{8} \mathrm{~km}$
16.689 days

First get $m_{\text {Jupiter }}$ from orbital elements of Callisto, then get m_{\odot} from orbital elements of Jupiter.

1. $P_{\text {Callisto }}=16.689 \mathrm{~d} \times 24 \frac{\mathrm{~h}}{\mathrm{~d}} \times 3600 \mathrm{~s} / \mathrm{h}=1.4419 \times 10^{6} \mathrm{~s}$

$$
a_{\text {Callisto }}=1.883 \times 10^{6} \mathrm{~km}=1.883 \times 10^{9} \mathrm{~m} .
$$

$$
P^{2}=\left(\frac{4 \pi^{2}}{G\left(m_{1}+m_{2}\right)}\right) a^{3}
$$

But $m_{\text {Callisto }} \ll m_{\text {Jupiter }}$, so...

$$
P^{2}=\left(\frac{4 \pi^{2}}{G m_{\text {Jupiter }}}\right) a^{3}
$$

$$
m_{\text {Jupiter }}=\left(\frac{4 \pi^{2}}{G P^{2}}\right) a^{3}=\left(\frac{4 \pi^{2}}{\left(6.6726 \times 10^{-11} \mathrm{Nm}^{2} / \mathrm{kg}^{2}\right)\left(1.4419 \times 10^{6} \mathrm{~s}\right)}\right)\left(1.883 \times 10^{9} \mathrm{~m}\right)^{3}
$$

$$
m_{\text {Jupiter }}=1.90 \times 10^{27} \mathrm{~kg}
$$

2. First, get sidereal period of Jupiter...

$$
\begin{aligned}
& \frac{1}{P}=\frac{1}{E}-\frac{1}{S}=\frac{1}{365.26 \mathrm{~d}}-\frac{1}{398.9 \mathrm{~d}}=2.3088 \times 10^{-4} \mathrm{~d}^{-1} \\
& P_{\text {Jupiter }}=4331.2 \mathrm{~d}=3.742 \times 10^{8} \mathrm{~s}
\end{aligned}
$$

Use Newton's modification of Kepler's 3rd law again...

$$
\begin{aligned}
& P^{2}=\left(\frac{4 \pi^{2}}{G\left(m_{\odot}+m_{\text {Jupiter }}\right)}\right) a^{3} \\
& \left(m_{\odot}+m_{\text {Jupiter }}\right)=\left(\frac{4 \pi^{2}}{G P^{2}}\right) a^{3}=\left(\frac{4 \pi^{2}}{\left(6.6726 \times 10^{-11} \mathrm{Nm}^{2} / \mathrm{kg}^{2}\right)\left(3.742 \times 10^{8} \mathrm{~s}\right)}\right)\left(7.783 \times 10^{11} \mathrm{~m}\right)^{3} \\
& \left(m_{\odot}+m_{\text {Jupiter }}\right)=1.992 \times 10^{30} \mathrm{~kg} \\
& m_{\odot}=1.992 \times 10^{30} \mathrm{~kg}-1.90 \times 10^{27} \mathrm{~kg}=1.990 \times 10^{30} \mathrm{~kg}
\end{aligned}
$$

Example 4:

What is the combined mass of the binary star system in which the distance between the primary star and its orbiting companion is $10 \mathrm{AU}\left(1.5 \times 10^{9} \mathrm{~km}\right)$ and the period is 5 y ?

Solution:

$8.0 \times 10^{31} \mathrm{~kg}$
This is one of the most important applications of Kepler's $3^{\text {rd }}$ law; i.e., measuring the mass of stars.
$a=1.5 \times 10^{12} \mathrm{~m}$
$P=5 \mathrm{y} \times \frac{365.26 \mathrm{~d}}{\mathrm{y}} \times 24 \frac{\mathrm{~h}}{\mathrm{~d}} \times 3600 \frac{\mathrm{~s}}{\mathrm{~h}}=1.578 \times 10^{8} \mathrm{~S}$
$P^{2}=\left(\frac{4 \pi^{2}}{G\left(m_{1}+m_{2}\right)}\right) a^{3}=\left(\frac{4 \pi^{2}}{G m_{\text {Total }}}\right) a^{3}$
$m_{\text {Total }}=\left(\frac{4 \pi^{2}}{G\left(1.578 \times 10^{8} \mathrm{~s}\right)^{2}}\right)\left(1.5 \times 10^{12} \mathrm{~m}\right)^{3}=8.02 \times 10^{31} \mathrm{~kg}$

