Atomic Theory

Basic Principles

1. Consider the following isotopes of an oxygen atom or ion (atomic number 8). Complete the table.

Isotopic Mass	Ionic Charge	Mass number	Number of Protons	Number of Neutrons	Number of electrons
15.9949 u	0	16	8	8	8
15.9949 u	-2	16	8	8	10
16.9991 u	0	17	8	9	8
16.9991 u	-1	17	8	9	9
17.9991 u	0	18	8	10	8

2. Consider the following isotopes of an hydrogen atom or ion (atomic number 1). Complete the table.

	Isotopic	Ionic	Mass	Number of	Number of	Number of
Name	Mass	Charge	number	Protons	Neutrons	electrons
Protium	1.00782 u	0	1	1	0	1
Protium	1.00782 u	+1	1	1	0	0
Deuterium	2.01410 u	0	2	1	1	1
Tritium	3.01604 u	0	3	1	2	1

3. What is the color of the emitted radiation when an electron in a hydrogen atom undergoes a transition from the n = 3 to n = 2 energy levels? ... n = 6 to n = 2 energy levels?

$$n = 3 \rightarrow 2$$
: Red $n = 6 \rightarrow 2$: Violet

4. Write the following isotopes in correct isotopic notation:

The carbon isotope possessing 6 protons and 7 neutrons $^{13}_{6}$ C

The element which has 2 protons and 2 neutrons in its nucleus ${}^{4}_{2}$ He