Error Propagation in Chemical Calculations

1. Magnetite is a mineral having the formula Fe_3O_4 . A 1.1324-g sample of a magnetite ore was dissolved in concentrated HCl to give a solution that contained Fe^{2+} and Fe^{3+} The Fe^{2+} was converted to Fe^{3+} with hot nitric acid. The iron was precipitated as the hydrous Fe_2O_3 with NH₃. The precipitate was converted to 0.5394 g of pure Fe_2O_3 (159.69 g/mol) by ignition. Calculate the percentage Fe in the original sample and estimate the standard deviation of the result. Assume that all masses are ± 1 in the last measured digit and that molar masses are ± 3 in the least significant digit.

2 Titration of 50.00 mL of 0.5251 M Na₂C₂O₄ required 38.71 mL of a potassium permanganate solution. Calculate the molarity of the KMnO₄ solution, include the calculated precision.

$$2\;MnO_4^- \; + \; 5\;H_2C_2O_4 \; + \; 6\;H^+ \; \rightarrow \; 2\;Mn^{2+} \; + \; 10\;CO_2 \; + \; 8\;H_2O$$

According to the NIST standards, the tolerance on the volumetric pipette is ± 0.05 mL; the burette, ± 0.03 mL. Keep in mind that the burette measurement is the result of two individual measurements each with their own precision. Assume the standard deviation of the concentration of sodium oxalate is ± 4 in the last digit (obtained from the propagated standard deviations of the masses, molar masses, and volumes used to prepare the standard).