An Example of Standard Additions

Chapter 8 Problem 21

Copper was determined in a river water sample by atomic absorption spectrometry and the method of standard additions. For the addition, $100.0 \ \mu L$ of a $1000.0 \ \mu g/mL$ Cu standard was added to $100.0 \ mL$ of solution. The following data were obtained:

Absorbance of reagent blank = 0.020Absorbance of sample = 0.520 Absorbance of sample plus addition – blank = 1.020

(a) Calculate the copper concentration in the sample

Start by defining the problem spectroscopically:

- (1) $A_1 = kC_1$ where C_1 is the concentration of the unspiked sample
- (2) $A_2 = kC_2$ where C_2 is the concentration of the spiked sample

Calculate the concentration, C_2 , in terms of C_1 and C_{spike} :

(3)
$$C_2 = \frac{C_1 V_1 + C_{\text{spike}} V_{\text{spike}}}{V_{\text{total}}}$$

Substitute eq 3 into eq 2

(4)
$$A_2 = k \frac{C_1 V_1 + C_{\text{spike}} V_{\text{spike}}}{V_{\text{total}}}$$

Now, ratio eq 4 to eq 1 to eliminate *k* :

$$\frac{A_2}{A_1} = \frac{\left(k\frac{C_1V_1 + C_{\text{spike}}V_{\text{spike}}}{V_{\text{total}}}\right)}{kC_1} = \frac{\frac{C_1V_1 + C_{\text{spike}}V_{\text{spike}}}{V_{\text{total}}}}{C_1} = \frac{C_1V_1 + C_{\text{spike}}V_{\text{spike}}}{C_1V_{\text{total}}}$$

All of the variables except C_1 are known. Correct the sample absorbance for blank and calculate:

$$\frac{1.020}{0.500} = \frac{C_1(100.0\text{mL}) + (1000.0\,^{\mu\text{g}}\text{mL})(0.1000\text{ mL})}{C_1(100.1\text{ mL})}$$

$$C_1 = C_{\text{river}} = 0.9597 \, \text{ms/mL}$$