An Example of Standard Additions

Chapter 8 Problem 21

Copper was determined in a river water sample by atomic absorption spectrometry and the method of standard additions. For the addition, $100.0 \mu \mathrm{~L}$ of a $1000.0 \mu \mathrm{~g} / \mathrm{mL} \mathrm{Cu}$ standard was added to 100.0 mL of solution. The following data were obtained:

Absorbance of reagent blank $=0.020$
Absorbance of sample $=0.520$
Absorbance of sample plus addition - blank $=1.020$
(a) Calculate the copper concentration in the sample

Start by defining the problem spectroscopically:
(1) $A_{1}=k C_{1}$ where C_{1} is the concentration of the unspiked sample
(2) $A_{2}=k C_{2}$ where C_{2} is the concentration of the spiked sample

Calculate the concentration, C_{2}, in terms of C_{1} and $C_{\text {spike }}$:
(3) $C_{2}=\frac{C_{1} V_{1}+C_{\text {spike }} V_{\text {spike }}}{V_{\text {total }}}$

Substitute eq 3 into eq 2
(4) $A_{2}=k \frac{C_{1} V_{1}+C_{\text {spike }} V_{\text {spike }}}{V_{\text {total }}}$

Now, ratio eq 4 to eq 1 to eliminate k :

$$
\frac{A_{2}}{A_{1}}=\frac{\left(k \frac{C_{1} V_{1}+C_{\text {spike }} V_{\text {spike }}}{V_{\text {total }}}\right)}{k C_{1}}=\frac{\frac{C_{1} V_{1}+C_{\text {spike }} V_{\text {spike }}}{V_{\text {total }}}}{C_{1}}=\frac{C_{1} V_{1}+C_{\text {spike }} V_{\text {spike }}}{C_{1} V_{\text {total }}}
$$

All of the variables except C_{1} are known. Correct the sample absorbance for blank and calculate:

$$
\frac{1.020}{0.500}=\frac{C_{1}(100.0 \mathrm{~mL})+\left(1000.0^{\mu \mathrm{g}} / \mathrm{mL}\right)(0.1000 \mathrm{~mL})}{C_{1}(100.1 \mathrm{~mL})}
$$

$$
C_{1}=C_{\text {river }}=0.9597 \mathrm{\mu g} / \mathrm{mL}
$$

