Density of Silver from the Unit Cell

Silver metal packs in the face-center cubic crystal structure. What is the density of silver metal?
Hints and helps: The atomic mass of silver is $107.87 \mathrm{~g} / \mathrm{mol}$; The atomic radius of silver is 165 pm ; Avogadro's number is 6.02×1023 atoms $/ \mathrm{mol}$; Avogadro's number is also $6.02 \times 10^{23} \mathrm{u} / \mathrm{g}$. Density is mass/volume and it doesn't matter if it's mass/volume of a lot of silver or a unit cell.

Solution:

$2 L^{2}=(4 r)^{2}=16 r^{2}$
$L=\sqrt{8} \cdot r$
$r=165 \mathrm{pm}=165 \times 10^{-12} \mathrm{~m}=165 \times 10^{-10} \mathrm{~cm}$
$V_{\text {unit cell }}=\left(\sqrt{8}\left(165 \times 10^{-10} \mathrm{~cm}\right)\right)^{3}=1.0165 \times 10^{-22} \mathrm{~cm}^{3}$
occupancy $=4$ atoms
atomic mass $=\frac{107.87 \frac{\mathrm{~g}}{\mathrm{~mol}}}{6.02 \times 10^{23} \frac{\text { atoms }}{\mathrm{mol}}}=1.792 \times 10^{-22} \frac{\mathrm{~g}}{\text { atom }}$
mass in unit cell $=1.792 \times 10^{-22} \frac{\mathrm{~g}}{\text { atom }} \times 4$ atoms $=7.167 \times 10^{-22} \mathrm{~g}$
density, $d=\frac{7.167 \times 10^{-22} \mathrm{~g}}{1.0165 \times 10^{-22} \mathrm{~cm}^{3}}=7.05 \frac{\mathrm{~g}}{\mathrm{~cm}^{3}}$

