Combining Percentage Composition, Concentration, and Equilibrium

Problem 16-33
A particular vinegar is found to contain 5.7% acetic acid, $\mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}$, by mass. What mass of the vinegar should be diluted with water to produce 0.750 L of a solution with $\mathrm{pH}=4.52$?

Solution:

This integrative problem requires quite a bit of information management to get to an answer.
Let's start by getting the one thing we really know, $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$:

$$
\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=10^{-\mathrm{pH}}=10^{-4.52}=3.02 \times 10^{-5} \mathrm{M}
$$

Now, we can calculate the $\left[\mathrm{CH}_{3} \mathrm{CO}_{2} \mathrm{H}\right]$ necessary to obtain that $\left[\mathrm{H}_{3} \mathrm{O}+\right]$:

$$
\begin{gathered}
\mathrm{CH}_{3} \mathrm{CO}_{2} \mathrm{H}+\mathrm{H}_{2} \mathrm{O} \rightleftarrows \mathrm{CH}_{3} \mathrm{CO}_{2}^{-}+\mathrm{H}_{3} \mathrm{O}^{+} \\
K_{\mathrm{a}}=1.75 \times 10^{-5}=\frac{\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]\left[\mathrm{CH}_{3} \mathrm{CO}_{2}^{-}\right]}{\left[\mathrm{CH}_{3} \mathrm{CO}_{2} \mathrm{H}\right]}
\end{gathered}
$$

But, we know that $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=\left[\mathrm{CH}_{3} \mathrm{CO}_{2}^{-}\right]$by stoichiometry, so...

$$
\begin{aligned}
& 1.75 \times 10^{-5}=\frac{\left(3.02 \times 10^{-5}\right)^{2}}{C_{\mathrm{CH}_{3} \mathrm{CO}_{2} \mathrm{H}}-3.02 \times 10^{-5}} \text { Do the algebra, } \\
& C_{\mathrm{CH}_{3} \mathrm{CO}_{2} \mathrm{H}}=8.23 \times 10^{-5} \mathrm{M} \mathrm{CH}_{3} \mathrm{CO}_{2} \mathrm{H}
\end{aligned}
$$

The problem stipulates 0.750 L of the diluted solution, so we can calculate the quantity, in moles, of acetic acid in the solution:

$$
n_{\mathrm{CH}_{3} \mathrm{CO}_{2} \mathrm{H}}=8.23 \times 10^{-5} \mathrm{M} \times 0.750 \mathrm{~L}=6.17 \times 10^{-5} \mathrm{~mol} \mathrm{CH}_{3} \mathrm{CO}_{2} \mathrm{H}
$$

We get that acetic acid from the $5.7 \% \mathrm{w} / \mathrm{w}$ solution of vinegar. We need only to calculate the mass of 5.7% acetic acid that contains that number of moles of acetic acid:

$$
m_{\mathrm{CH}_{3} \mathrm{CO}_{2} \mathrm{H}}=\frac{6.17 \times 10^{-5} \mathrm{~mol} \mathrm{CH}_{3} \mathrm{CO}_{2} \mathrm{H}}{\left(0.057 \frac{\mathrm{gCH}_{3} \mathrm{CO}_{2} \mathrm{H}}{\mathrm{~g} \mathrm{vinegar}} / 60.05 \frac{\mathrm{~g}}{\text { mol }}\right)}=0.065 \mathrm{~g} \text { vinegar }
$$

