Equilibrium III: Basic Acid-Base Equilibrium

1. What are the species (equilibrium) concentrations of $\mathrm{H}_{3} \mathrm{O}^{+}, \mathrm{OH}^{-}$, and Cl^{-}in 0.10 M hydrochloric acid?

$$
\begin{aligned}
& {\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=\left[\mathrm{Cl}^{-}\right]=0.10 \mathrm{M} \quad p \mathrm{H}=-\log (0.10)=1.0} \\
& {\left[\mathrm{OH}^{-}\right]=\frac{K_{\mathrm{w}}}{\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]}=\frac{1.0 \times 10^{-14}}{0.10}=1.0 \times 10^{-13} \mathrm{M}}
\end{aligned}
$$

2. What are the concentrations of each species in a solution prepared to be 0.10 M acetic acid $\left(\mathrm{CH}_{3} \mathrm{COOH}\right) ? K_{\mathrm{a}}=1.75 \times 10^{-5}$

$$
\begin{aligned}
& \begin{array}{c}
\mathrm{HOAc}
\end{array}+\mathrm{H}_{2} \mathrm{O} \quad \begin{array}{ccc}
\rightleftarrows & \mathrm{OAc}^{-} & + \\
x & \mathrm{H}_{3} \mathrm{O}^{+} \\
\text {at equilibrium } 0.10-x
\end{array} \\
& K_{\mathrm{a}}=\frac{\left[\mathrm{OAc}^{-}\right]\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]}{[\mathrm{HOAc}]}=1.75 \times 10^{-5}=\frac{x^{2}}{0.10-x} \quad x \text { may be small compared to } 0.10 \text {, so... } \\
& 1.75 \times 10^{-5} \cong \frac{x^{2}}{0.10} \quad x=\left[\mathrm{OAc}^{-}\right]=\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=\sqrt{1.75 \times 10^{-6}}=1.33 \times 10^{-3} \mathrm{M}
\end{aligned}
$$

$$
\begin{array}{|l|}
\hline \text { Check to see if assumption is acceptable: } \\
\frac{0.00133}{0.1} \times 100=1.3 \%(<5 \% \text {, so accept assumption })
\end{array}
$$

$$
[\mathrm{HOAc}]=0.10 \mathrm{M}-0.00133 \mathrm{M}=0.099 \mathrm{M}
$$

$$
\left[\mathrm{OH}^{-}\right]=\frac{1.0 \times 10^{-14}}{0.00133}=7.6 \times 10^{-12} \mathrm{M}
$$

3. What is the approximate pH of 0.075 M formic acid? $K_{\mathrm{a}}=1.7 \times 10^{-4}$

This problem is virtually identical to problem 2.

4. What is the K_{a} of nitrous acid if a 0.050 M solution has a pH of 2.34 ?

$$
\begin{aligned}
& {\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=10^{-2.34}=4.57 \times 10^{-3} \mathrm{M} \quad\left(=\left[\mathrm{NO}_{2}^{-}\right]\right)} \\
& C_{\mathrm{HNO}_{2}}=0.050 \mathrm{M} \quad\left[\mathrm{HNO}_{2}\right]=0.050 \mathrm{M}-4.57 \times 10^{-3} \mathrm{M}=0.0454 \mathrm{M} \\
& K_{\mathrm{a}}=\frac{\left(4.57 \times 10^{-3}\right)^{2}}{0.0454}=4.6 \times 10^{-4}
\end{aligned}
$$

5. What is the pH of 0.010 M ammonia? $\mathrm{Kb}=1.8 \times 10^{-5}$

$$
\begin{array}{rrrrrr}
\mathrm{NH}_{3}+ & \mathrm{H}_{2} \mathrm{O} & \rightleftarrows & \mathrm{NH}_{4}^{+} & + & \mathrm{OH}^{-} \\
\text {at equilibrium } 0.010-x & & & x & & x
\end{array}
$$

$$
K_{\mathrm{a}}=\frac{\left[\mathrm{NH}_{4}^{+}\right]\left[\mathrm{OH}^{-}\right]}{\left[\mathrm{NH}_{3}\right]}=1.8 \times 10^{-5}=\frac{x^{2}}{0.010-x} \quad x \text { is small compared to } 0.010, \text { so } \ldots
$$

$$
1.8 \times 10^{-5} \cong \frac{x^{2}}{0.010} \quad x=\left[\mathrm{NH}_{4}^{+}\right]=\left[\mathrm{OH}^{-}\right]=\sqrt{1.8 \times 10^{-7}}=4.24 \times 10^{-4} \mathrm{M}
$$

(Demonstrate yourself that x is small compared to 0.010 M)

$$
\begin{aligned}
& {\left[\mathrm{NH}_{3}\right]=0.010 \mathrm{M}-4.24 \times 10^{-4} \mathrm{M}=9.6 \times 10^{-3} \mathrm{M}} \\
& {\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=\frac{1.0 \times 10^{-14}}{4.24 \times 10^{-4}}=2.36 \times 10^{-11} \mathrm{M} \quad \mathrm{pH}=-\log \left(2.36 \times 10^{-11}\right)=10.6}
\end{aligned}
$$

6. Assuming that $K_{\mathrm{a}}=1.75 \times 10^{-5}$ for acetic acid, what is K_{b} for acetate ion? What is the pH of 0.010 M sodium acetate?

$$
\begin{aligned}
& K_{\mathrm{b}}=\frac{K_{\mathrm{w}}}{K_{\mathrm{a}}}=\frac{1.0 \times 10^{-14}}{1.75 \times 10^{-5}}=5.71 \times 10^{-10} \\
& \qquad \mathrm{OAc}^{-}+\mathrm{H}_{2} \mathrm{O} \rightleftarrows \begin{array}{c}
\mathrm{HOAc} \\
\text { at equilibrium } 0.010-x
\end{array}+\mathrm{OH}^{-} \\
& 5.71 \times 10^{-10}=\frac{\left[{\mathrm{HOAc}]\left[\mathrm{OH}^{-}\right]}_{\left[\mathrm{OAc}^{-}\right]}=\frac{x^{2}}{0.010-x} \cong \frac{x^{2}}{0.010}\right.}{x=[\mathrm{HOAc}]=\left[\mathrm{OH}^{-}\right]=2.4 \times 10^{-6} \mathrm{M}} \quad \mathrm{pOH}=5.62 \\
& p \mathrm{H}=14-p \mathrm{OH}=8.38
\end{aligned}
$$

