Equilibrium Solubility of Oxygen in Water

Problem 13-42
At 1.00 atm , the solubility of O_{2} in water is $2.18 \times 10^{-3} \mathrm{M}$ at $0^{\circ} \mathrm{C}$ and $1.26 \times 10^{-3} \mathrm{M}$ at $25^{\circ} \mathrm{C}$. What volume of $\mathrm{O}_{2}(\mathrm{~g})$, measured at $25^{\circ} \mathrm{C}$ and 1.00 atm , is expelled when 515 mL of water saturated with O_{2} is heated from 0 to $25^{\circ} \mathrm{C}$?

Solution:

This integrative problem simply combines gas laws from earlier chapters to solution concentration. It really doesn't have anything macroscopically to do with intermolecular forces.

Calculate the molar quantity of O_{2} in the cold solution and then the warm solution:

$$
\begin{aligned}
& n_{\mathrm{O}_{2}}^{0^{\circ}}=\left(2.18 \times 10^{-3} \frac{\mathrm{molo}_{2}}{\mathrm{~L}}\right) \times 0.515 \mathrm{~L}=0.001123 \mathrm{~mol} \mathrm{O}_{2} \\
& n_{\mathrm{O}_{2}}^{25^{\circ}}=\left(1.26 \times 10^{-3} \frac{\mathrm{molO}_{2}}{\mathrm{~L}}\right) \times 0.515 \mathrm{~L}=0.0006489 \mathrm{~mol} \mathrm{O}_{2}
\end{aligned}
$$

The difference between these two quantities is the amount of O_{2} expelled.

$$
n_{\mathrm{O}_{2}}^{\text {expelled }}=0.001123 \mathrm{~mol}-0.0006489 \mathrm{~mol}=4.738 \times 10^{-4} \mathrm{~mol} \mathrm{O}_{2}
$$

Now it's simply a gas law problem to calculate volume:

$$
\begin{gathered}
\frac{P V}{n T}=R \\
n_{\mathrm{O}_{2}}=4.738 \times 10^{-4} \mathrm{~mol} \mathrm{O}_{2} \\
T=298.15 \mathrm{~K} \\
P=1.00 \mathrm{~atm} \\
V=\frac{n T R}{P}=\frac{\left(4.738 \times 10^{-4} \mathrm{~mol}\right)(298.15 \mathrm{~K})\left(0.082059 \frac{\mathrm{~L} \cdot \mathrm{~atm}}{\mathrm{~mol} \cdot \mathrm{~K}}\right)}{1.00 \mathrm{~atm}}=0.0116 \mathrm{~L} \mathrm{O}_{2}
\end{gathered}
$$

