Equilibrium Solubility of Oxygen in Water

Problem 13-42

At 1.00 atm, the solubility of O_2 in water is 2.18×10^{-3} M at 0°C and 1.26×10^{-3} M at 25°C. What volume of $O_2(g)$, measured at 25°C and 1.00 atm, is expelled when 515 mL of water saturated with O_2 is heated from 0 to 25°C?

Solution:

This integrative problem simply combines gas laws from earlier chapters to solution concentration. It really doesn't have anything macroscopically to do with intermolecular forces.

Calculate the molar quantity of O_2 in the cold solution and then the warm solution:

$$n_{O_2}^{0^\circ} = \left(2.18 \times 10^{-3} \frac{\text{mol } O_2}{\text{L}}\right) \times 0.515 \text{ L} = 0.001123 \text{ mol } O_2$$
$$n_{O_2}^{25^\circ} = \left(1.26 \times 10^{-3} \frac{\text{mol } O_2}{\text{L}}\right) \times 0.515 \text{ L} = 0.0006489 \text{ mol } O_2$$

The difference between these two quantities is the amount of O_2 expelled.

 $n_{O_2}^{\text{expelled}} = 0.001123 \text{ mol} - 0.0006489 \text{ mol} = 4.738 \times 10^{-4} \text{ mol } O_2$

Now it's simply a gas law problem to calculate volume:

$$\frac{PV}{nT} = R$$

$$n_{O_2} = 4.738 \times 10^{-4} \text{ mol } O_2$$

 $T = 298.15 \text{ K}$
 $P = 1.00 \text{ atm}$

$$V = \frac{nTR}{P} = \frac{(4.738 \times 10^{-4} \text{ mol})(298.15 \text{ K})(0.082059 \frac{\text{L-atm}}{\text{mol} \cdot \text{K}})}{1.00 \text{ atm}} = 0.0116 \text{ L O}_2$$