Solutions I: Saturated and Unsaturated Solutions

1. The concentration of dissolved oxygen from the air at 1.0 atm in sea water is $3.1 \times 10^{-4} \mathrm{M}$ at $25^{\circ} \mathrm{C}$. Predict the concentration of dissolved oxygen in sea water at a partial pressure O_{2} of 1.0 atm (i.e., pure oxygen).

$$
\begin{aligned}
& c=k P_{\mathrm{O}_{2}} \text { so } \frac{c_{1}}{c_{2}}=\frac{P_{1}}{P_{2}} \text { or } c_{1}=c_{2} \frac{P_{1}}{P_{2}} \\
& c_{\text {pure } \mathrm{O}_{2}}=3.1 \times 10^{-4} M\left(\frac{1.0 \mathrm{~atm}}{0.21 \mathrm{~atm}}\right)=1.5 \times 10^{-3} \mathrm{M}
\end{aligned}
$$

2. A solution of KNO_{3} is prepared carefully to be 28.0 g of solid dissolved in 200.0 g of water, then slowly cooled to $0.0^{\circ} \mathrm{C}$. No crystallization occurs. Is the solution unsaturated, saturated, or supersaturated? $\left(s_{\mathrm{KNO}_{3}}^{0^{\circ} \mathrm{C}}=13.3 \mathrm{~g} / 100 \mathrm{~g} \mathrm{H}_{2} \mathrm{O}\right)$

$$
C=\frac{28.0 \mathrm{~g} \mathrm{KNO}_{3}}{200.0 \mathrm{~g} \mathrm{H}_{2} \mathrm{O}}=0.140 \frac{\mathrm{~g} \mathrm{KNO}_{3}}{\mathrm{~g} \mathrm{H}_{2} \mathrm{O}}
$$

since the solubility is $0.133 \frac{\mathrm{~g} \mathrm{KNO}_{3}}{\mathrm{gH}_{2} \mathrm{O}}$ the solution is supersaturated.
3. When a seed crystal is added, some solid precipitates from solution (prepared in question 2). Predict the quantity of solid that precipitates.

$$
\begin{aligned}
& m_{\text {dissolves }}=0.133 \frac{\mathrm{~g} \mathrm{KNO}_{3}}{\mathrm{~g} \mathrm{H}_{2} \mathrm{O}} \times 200.0 \mathrm{~g} \mathrm{H}_{2} \mathrm{O}=26.6 \mathrm{~g} \mathrm{KNO}_{3} \\
& m_{\text {precipitated }}=28.0 \mathrm{~g}-26.6 \mathrm{~g}=1.4 \mathrm{~g}
\end{aligned}
$$

4. What is the molal concentration of the solution prepared by dissolving 60.0 g of glucose $\left(\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}\right.$, $180.2 \mathrm{~g} / \mathrm{mol}$) in 100.0 mL of water?

$$
\begin{aligned}
& n_{\text {gluc }}=60.0 \mathrm{~g} \mathrm{gluc} / 180.2 \frac{\mathrm{~g} / \mathrm{mol}}{}=0.3330 \mathrm{~mol} \text { gluc } \\
& C=\frac{0.3330 \mathrm{~mol} \mathrm{gluc}}{0.1000 \mathrm{~kg}}=3.33 \mathrm{~m}
\end{aligned}
$$

5. What quantity of methanol $\left(\mathrm{CH}_{3} \mathrm{OH}\right)$ must be added to 250.0 g of water to make a 0.25 m solution?

$$
\begin{aligned}
& n=0.2500 \mathrm{~kg} \times 0.25 \mathrm{~m}=0.0625 \mathrm{~mol} \mathrm{CH}_{3} \mathrm{OH} \\
& m=0.0625 \mathrm{~mol} \times 32.04 \mathrm{~g} / \mathrm{mol}=2.00 \mathrm{~g} \mathrm{CH}_{3} \mathrm{OH}
\end{aligned}
$$

