Heat Balance and Phase Changes

Problem 12-12
A $50.0-\mathrm{g}$ piece of iron at $152^{\circ} \mathrm{C}$ is dropped into $20.0 \mathrm{~g} \mathrm{H}_{2} \mathrm{O}(\mathrm{l})$ at $89^{\circ} \mathrm{C}$ in an open, thermally insulated container. How much water would you expect to vaporize, assuming no water splashes out? The specific heats of iron and water are 0.45 and $4.21 \mathrm{~J} \mathrm{~g}^{-1} \mathrm{C}^{-1}$, respectively, and $\Delta H_{\text {vap }}=40.7 \mathrm{~kJ} \mathrm{~mol}^{-1}$ $\mathrm{H}_{2} \mathrm{O}$.

Solution

Notice that the value for the specific heat of water is $4.21 \mathrm{~J} \mathrm{~g}^{-10} \mathrm{C}^{-1}$ here. This illustrates the slight temperature dependence on specific heat that we often ignore.

If you draw a heating curve for water in this problem, it might look something like this:

The maximum temperature the water can reach is $100^{\circ} \mathrm{C}$, at which point a phase change will occur. The temperature of the iron, then, goes to $100^{\circ} \mathrm{C}$ as well. If you just write

$$
q_{\mathrm{Fe}}+q_{\mathrm{H}_{2} \mathrm{O}}=0=m_{\mathrm{Fe}} c_{\mathrm{Fe}} \Delta T_{\mathrm{Fe}}+m_{\mathrm{H}_{2} \mathrm{O}} c_{\mathrm{H}_{2} \mathrm{O}} \Delta T_{\mathrm{H}_{2} \mathrm{O}}
$$

You discover that the maximum temperature obtained is more than $100^{\circ} \mathrm{C}$, which is impossible. So, the correct energy balance must be

$$
m_{\mathrm{Fe}} c_{\mathrm{Fe}} \Delta T_{\mathrm{Fe}}+m_{\mathrm{H}_{2} \mathrm{O}} \mathrm{C}_{\mathrm{H}_{2} \mathrm{O}} \Delta T_{\mathrm{H}_{2} \mathrm{O}}+n_{\mathrm{H}_{2} \mathrm{O} \text { vaporized }} \Delta H_{\text {vap }}=0
$$

Now, let's fill in the variables of the things we know and calculate what we don't:

$$
\begin{aligned}
& 0=(50.0 \mathrm{~g})\left(0.45 \frac{\mathrm{~J}}{\mathrm{~g} \cdot \circ \mathrm{C}}\right)\left(100^{\circ} \mathrm{C}-152^{\circ} \mathrm{C}\right)+(20.0 \mathrm{~g})\left(4.21 \frac{\mathrm{~J}}{\mathrm{~g} \cdot \circ} \mathrm{C}\right)\left(100^{\circ} \mathrm{C}-89^{\circ} \mathrm{C}\right)+n_{\mathrm{H}_{2} \mathrm{O} \text { vaporized }}\left(40.7 \times 10^{3} \frac{\mathrm{~J}}{\mathrm{~mol}}\right) \\
& 0=-1170 \mathrm{~J}+926.2 \mathrm{~J}+n_{\mathrm{H}_{2} \mathrm{O} \text { vaporized }}\left(40.7 \times 10^{3} \frac{\mathrm{~J}}{\mathrm{~mol}}\right) \\
& n_{\mathrm{H}_{2} \mathrm{O} \text { vaporized }}\left(40.7 \times 10^{3} \frac{\mathrm{~J}}{\mathrm{~mol}}\right)=243.8 \mathrm{~J} \\
& n_{\mathrm{H}_{2} \mathrm{O} \text { vaporized }}=0.00599 \mathrm{~mol} \mathrm{H}_{2} \mathrm{O}
\end{aligned}
$$

And finish by calculating the mass of water vaporized...

$$
m_{\mathrm{H}_{2} \mathrm{O}}=0.00599 \mathrm{~mol} \times 18.015 \frac{\mathrm{~g}}{\mathrm{~mol}}=0.108 \mathrm{~g}
$$

