Intermolecular Forces

1. From Lange's Handbook of Chemistry, $13^{\text {TH }}$ Ed. (McGraw Hill), we find $\Delta H_{\text {vap }}$ for $\mathrm{H}_{2} \mathrm{O}$ to be 40.7 $\mathrm{kJ} \mathrm{mol}^{-1}$. We also know the vapor pressure of water at $100^{\circ} \mathrm{C}$. Calculate the vapor pressure of water at $25.0^{\circ} \mathrm{C}$ in a closed container.

$$
\begin{aligned}
\ln \frac{P_{25}}{760 \text { torr }} & =\frac{40,700 \mathrm{~J} / \mathrm{mol}}{8.314 \mathrm{~J} / \mathrm{mol} \mathrm{~K}}\left(\frac{1}{373.2 \mathrm{~K}}-\frac{1}{298.2 \mathrm{~K}}\right) \\
\frac{P_{25}}{760 \text { torr }} & =0.03692 \\
P_{25} & =28.1 \text { torr }
\end{aligned}
$$

2. The vapor pressures and associated temperatures for ethanol were found in the CRC Handbook of Chemistry and Physics. Determine $\Delta H_{\text {vap }}$ for ethanol. Is it different from water? Why?

$\boldsymbol{v} \cdot \boldsymbol{p}$. $(\mathbf{m m ~ H g})$	Temp $\left({ }^{\circ} \mathbf{C}\right)$
40.0	19.0
400.0	63.5
760.0	78.4

$$
\begin{aligned}
\ln \frac{40 \mathrm{~mm} \mathrm{Hg}}{400 \mathrm{~mm} \mathrm{Hg}} & =\frac{\Delta H_{\text {vap }}}{8.314 \mathrm{~J} / \mathrm{mol} \cdot \mathrm{~K}}\left(\frac{1}{373.2 \mathrm{~K}}-\frac{1}{298.2 \mathrm{~K}}\right) \\
-2.3026 & =\frac{\Delta H_{\text {vap }}}{8.314 \mathrm{~J} / \mathrm{mol} \cdot \mathrm{~K}}\left(-4.5231 \times 10^{-4} \mathrm{~K}^{-1}\right) \\
\Delta H_{\text {vap }} & =42,300 \mathrm{~J} / \mathrm{mol}=42.3 \mathrm{~kJ} / \mathrm{mol}
\end{aligned}
$$

3. The vapor pressures measured at several temperatures for benzene are shown in the table. Calculate the normal boiling point for benzene. (The literature value is $80.1^{\circ} \mathrm{C}$.)

First, get $\Delta H_{\text {vap }}$:

$$
\begin{aligned}
\ln \frac{4.11 \mathrm{kPa}}{6.77 \mathrm{kPa}} & =\frac{\Delta H_{\text {vap }}}{8.314 \mathrm{y} / \mathrm{mol} \cdot \mathrm{~K}}
\end{aligned}\left(\frac{1}{283.2 \mathrm{~K}}-\frac{1}{273.2 \mathrm{~K}}\right)
$$

Now, get n.b.p.:

$$
\begin{aligned}
\ln \frac{25.00 \mathrm{kPa}}{101.325 \mathrm{kPa}} & =\frac{32,103 \mathrm{~J} / \mathrm{mol}}{8.314 \mathrm{~mol} / \mathrm{K}}\left(\frac{1}{T_{\text {n.b.p }}}-\frac{1}{313.2 \mathrm{~K}}\right) \\
-1.3995 & =3861.3 \mathrm{~K}\left(\frac{1}{T_{\text {n.b.p }}}-0.0031928 \mathrm{~K}^{-1}\right) \\
T_{\text {n.b.p }} & =353.3 \mathrm{~K}=80.11^{\circ} \mathrm{C}
\end{aligned}
$$

Temp $\left({ }^{\circ} \mathbf{C}\right)$	$\boldsymbol{v} . \boldsymbol{p}$. $(\mathbf{k P a})$
0.0	4.11
10.0	6.77
20.0	10.78
40.0	25.00

4. How much energy is needed to melt an ice cube (at constant temperature) that has a mass of 28.0 $\mathrm{g} ?\left(\Delta H_{\text {fusion }}=6.02 \mathrm{~kJ} \mathrm{~mol}^{-1}\right)$

$$
q=n \cdot \Delta H_{\text {fusion }}=(28.0 \mathrm{~g} / 18.015 \mathrm{~g} / \mathrm{mol}) 6.02 \mathrm{~kJ} / \mathrm{mol}=9.36 \mathrm{~kJ}
$$

5. How much energy is required to convert 28.0 g of ice at $-12.0^{\circ} \mathrm{C}$ to steam at $100.0^{\circ} \mathrm{C}$ in a closed vessel? (Hint: What information not listed will be needed?)

$$
\left.\begin{array}{l}
c_{\text {ice }}=2.01 \frac{\mathrm{~J}}{\mathrm{~g} \cdot{ }^{\circ} \mathrm{C}} \\
c_{\text {liquid }}=4.184 \frac{\mathrm{~J}}{\mathrm{~g} \cdot{ }^{\circ} \mathrm{C}} \\
\Delta H_{\text {fusion }}=6.01 \mathrm{~kJ} \mathrm{~mol}^{-1} \\
\Delta H_{\text {vap }}=40.7 \mathrm{~kJ} \mathrm{~mol}^{-1}\left(\text { at } 100^{\circ} \mathrm{C} ; 44.0 \mathrm{~kJ} \mathrm{~mol}^{-1} \text { at } 25^{\circ} \mathrm{C}\right) \\
q_{\text {solid-solid }}=m c_{\text {ice }} \Delta T=(28.0 \mathrm{~g})\left(2.01 \frac{\mathrm{~J}}{\mathrm{~g} \cdot{ }^{\circ} \mathrm{C}}\right)\left(0^{\circ} \mathrm{C}-\left[-12.0^{\circ} \mathrm{C}\right]\right)=675.4 \mathrm{~J} \\
q_{\text {fusion }}=n \cdot \Delta H_{\text {fusion }}=(28.0 \mathrm{~g} / 18.015 \mathrm{~g} / \mathrm{mol}
\end{array}\right)\left(6.01 \mathrm{~kJ} \mathrm{~mol}^{-1}\right)\left(1000 \frac{\mathrm{~J}}{\mathrm{~kJ}}\right)=9341.1 \mathrm{~J},
$$

Total Energy:

$$
q_{\text {total }}=675.4 \mathrm{~J}+9341.1 \mathrm{~J}+11,715.2 \mathrm{~J}+63,258.4 \mathrm{~J}=84990 \mathrm{~J}
$$

