HANDOUT SET

GENERAL CHEMISTRY II

Periodic Table of the Elements

$\begin{array}{r} 1 \\ \text { IA } \end{array}$	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	$\begin{gathered} 18 \\ \text { vIIIA } \end{gathered}$
1																	2
H																	He
1.00794	IIA											IIIA	IVA	va	VIA	VIIA	4.00262
3	4											5	6	7	8	9	10
Li	Be											B	C	N	0	F	Ne
6.941	9.0122											10.811	12.011	14.0067	15.9994	18.9984	20.179
11	12											13	14	15	16	17	18
Na	Mg											Al	Si	P	S	Cl	Ar
22.9898	24.305	IIIB	IvB	vB	VIB	VIIB		VIIIB		IB	IIB	26.98154	28.0855	30.97376	32.066	35.453	39.948
19	20	21	22	${ }^{23}$	24	25	26	27	28	29	30	31	32	33	34	35	36
K	Ca	Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	$\mathbf{Z n}$	Ga	Ge	As	Se	Br	$\mathbf{K r}$
39.0983	40.078	44.9559	47.88	50.9415	51.9961	54.9380	55.847	58.9332	58.69	63.546	65.39	69.723	72.59	74.9216	78.96	79.904	83.80
37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
Rb	Sr	Y	Zr	Nb	Mo	Tc	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Te	I	Xe
85.4678	87.62	88.9059	91.224	92.9064	95.94	(98)	101.07	102.9055	106.42	${ }_{107.8682}$	${ }_{112.41}$	114.82	118.710	121.75	127.60	126.9045	131.29
55	56	57	72	73	74	75	76	77	78	79	80	81	82	83	${ }^{84}$	85	86
Cs	Ba	La*	Hf	Ta	W	Re	Os	Ir	Pt	Au	$\mathbf{H g}$	Tl	Pb	Bi	Po	At	Rn
132.9054	137.34	138.91	178.49	180.9479	183.85	186.207	190.2	192.22	195.08	196.9665	200.59	204.383	207.2	208.9804	(209)	(210)	(222)
87	88	89	104	105	106	107	108	109	110	111	112						
Fr	Ra	Ac**	$\mathbf{R f}$	Db	Sg	Bh	Hs	Mt			***						
	226.0254	227.0278							(270)	(272)							

*Lanthanides		${ }^{59}$	${ }^{60}$	${ }^{61}$	${ }^{62}$	${ }^{63}$	${ }^{64}$	65		67		69	70	71
	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Ho	Er	Tm	Yb	$\mathbf{L u}$
	140.12	140.9077	144.24	(145)	150.36	151.96	157.25	158.925	162.50	164.930	167.26	T8.9342	173.04	174.967

**Actinides	$\begin{gathered} 90 \\ \mathbf{T h} \end{gathered}$	$\begin{gathered} 91 \\ \mathbf{P a}_{\mathbf{a}} \end{gathered}$	92	93	94	95	${ }^{96}$	97	98	99	100	101	102	103
				Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr
	232.038	231.0659	238.0289	237.0482	(244)	(243)	(247)	(247)	(251)	(252)	(257)	(258)	(259)	(260)

Mass numbers in parenthesis are the mass numbers of the most stable isotopes. As of 1997 elements 110-112 have not been named.
***Peter Armbruster and Sigurd Hofman synthesized a single atom at the Heavy-Ion Research Center in Darmstadt, Germany in 1996. The atom survived for $280 \mu \mathrm{~s}$ after which it decayed to element 110 by loss of an α-particle

Chapter 10 and 11

Structure and Bonding

TABLE OF ELECTRONEGATIVITIES

2.1		$\square 0.50 .0$						$\square 2.5 .29$									He	-
${ }^{\text {Li }}$	Be	$1.0 \cdot 1.4$						$\square 3.0 \cdot 3.5$				${ }^{\text {B }}$	c	N	\bigcirc			Ne
1.0	1.6	$\square 1.5 \cdot 1.9$						$\square{ }^{\text {3.6.3.9 }}$				2.0	2.5	3.0	3.5	4.0		
- 0.9	$\mathrm{Mg}^{\mathrm{Mg}}$	20.24										${ }^{\text {Al }}$	si	${ }^{P}{ }^{\text {P }}$	25	$0_{2}^{c 1}$		Ar
0.8	1.3	1.4	1.5	1.6	1.7	1.6	1.8	1.9	1.9	1.9	1.7	1.6	2.0	2.2	2.6	2.8		-
0.8	1.0	${ }_{1}{ }^{\gamma}$	1.3	$\begin{gathered} \mathrm{Nb} \\ 1.6 \end{gathered}$	2.2	$\begin{array}{\|l\|} \hline T c \\ 2.1 \end{array}$	$\begin{array}{\|l\|} \hline \text { Ru } \\ 2.2 \end{array}$	$\begin{aligned} & \mathrm{Rn} \\ & 2.3 \end{aligned}$	$\begin{aligned} & \hline \text { Pd } \\ & 2.2 \end{aligned}$	$\begin{aligned} & \mathrm{Ag} \\ & 1.9 \end{aligned}$	$\begin{gathered} c d \\ 1.7 \end{gathered}$	$\begin{aligned} & \ln \\ & 1.8 \end{aligned}$	$\begin{gathered} \mathrm{sn} \\ 2.0 \end{gathered}$	$\begin{array}{\|c} \text { sb } \\ 2.1 \end{array}$	$\begin{aligned} & \hline \mathrm{Te} \\ & 2.1 \end{aligned}$	2.7		${ }^{\text {xe }}$.
cs 0.8	8a	1.1	1.3	$\begin{gathered} \mathrm{Ta} \\ 1.5 \end{gathered}$	1.7	$\begin{gathered} \mathrm{Re} \\ 1.9 \end{gathered}$	O. 2.	${ }^{\text {Ir }}$	2.2	2.4	Hg 1.9	2.0	$\begin{aligned} & \text { Pb } \\ & 2.3 \end{aligned}$	2i	Po 2	${ }^{\text {At }} 2$		${ }^{\text {Rn }}$
${ }_{0} \mathrm{Fr}_{7}$	$\begin{array}{\|l\|} \hline \mathrm{Ra} \\ \hline 1 \end{array}$	${ }_{1}^{\text {Ac }}$																

TABLE OF AVERAGE BOND ENERGIES

	BOND ENERGY, $\mathbf{k J / m o l}$	$\mathbf{B O N D}$	BOND ENERGY, $\mathbf{k J} / \mathbf{m o l}$	BOND	BOND ENERGY, kJ/mol
$\mathrm{H}-\mathrm{H}$	436	$\mathrm{C}-\mathrm{C}$	347	$\mathrm{~N}-\mathrm{N}$	163
$\mathrm{H}-\mathrm{C}$	414	$\mathrm{C}=\mathrm{C}$	611	$\mathrm{~N}=\mathrm{N}$	418
$\mathrm{H}-\mathrm{N}$	389	$\mathrm{C} \equiv \mathrm{C}$	837	$\mathrm{~N} \equiv \mathrm{~N}$	946
$\mathrm{H}-\mathrm{O}$	464	$\mathrm{C}-\mathrm{N}$	305	$\mathrm{~N}-\mathrm{O}$	222
$\mathrm{H}-\mathrm{S}$	368	$\mathrm{C}=\mathrm{N}$	615	$\mathrm{~N}=\mathrm{O}$	590
$\mathrm{H}-\mathrm{F}$	565	$\mathrm{C} \equiv \mathrm{N}$	891	$\mathrm{O}-\mathrm{O}$	142
$\mathrm{H}-\mathrm{Cl}$	431	$\mathrm{C}-\mathrm{O}$	360	$\mathrm{O}=\mathrm{O}$	498
$\mathrm{H}-\mathrm{Br}$	364	$\mathrm{C}=\mathrm{O}$	736	$\mathrm{~F}-\mathrm{F}$	159
$\mathrm{H}-\mathrm{I}$	297	$\mathrm{C}-\mathrm{Cl}$	339	$\mathrm{Cl}-\mathrm{Cl}$	243
				$\mathrm{Br}-\mathrm{Br}$	193
				$\mathrm{I}-\mathrm{I}$	151

TABLE OF AVERAGE BOND LENGTHS

	BOND LENGTH, pm	BOND	BOND LENGTH, pm	BOND	BOND LENGTH, pm
$\mathrm{H}-\mathrm{H}$	74.14	$\mathrm{C}-\mathrm{C}$	154	$\mathrm{~N}-\mathrm{N}$	145
$\mathrm{H}-\mathrm{C}$	110	$\mathrm{C}=\mathrm{C}$	134	$\mathrm{~N}=\mathrm{N}$	123
$\mathrm{H}-\mathrm{N}$	100	$\mathrm{C} \equiv \mathrm{C}$	120	$\mathrm{~N} \equiv \mathrm{~N}$	109.8
$\mathrm{H}-\mathrm{O}$	97	$\mathrm{C}-\mathrm{N}$	147	$\mathrm{~N}-\mathrm{O}$	136
$\mathrm{H}-\mathrm{S}$	132	$\mathrm{C}=\mathrm{N}$	128	$\mathrm{~N}=\mathrm{O}$	120
$\mathrm{H}-\mathrm{F}$	91.7	$\mathrm{C} \equiv \mathrm{N}$	116	$\mathrm{O}-\mathrm{O}$	145
$\mathrm{H}-\mathrm{Cl}$	127.4	$\mathrm{C}-\mathrm{O}$	143	$\mathrm{O}=\mathrm{O}$	121
$\mathrm{H}-\mathrm{Br}$	141.4	$\mathrm{C}=\mathrm{O}$	120	$\mathrm{~F}-\mathrm{F}$	143
$\mathrm{H}-\mathrm{I}$	160.9	$\mathrm{C}-\mathrm{Cl}$	178	$\mathrm{Cl}-\mathrm{Cl}$	199
				$\mathrm{Br}-\mathrm{Br}$	228
				$\mathrm{I}-\mathrm{I}$	266

Writing Lewis Structures

1. Count valence electrons for all atoms.
add $1 e^{-}$for every negative charge if a polyatomic ion subtract $1 e^{-}$for every positive charge if an ion
2. Draw a skeletal structure (be reasonable, some rules apply)

H is always a terminal atom
Certain atoms do not normally complete the octet, namely;
$\mathrm{H}, \mathrm{He}, \mathrm{Li}, \mathrm{Be}$, and B (Boron completes the octet with a formal charge of +1)
In polyatomic ions the least electronegative atom is the central atom
H 1 bond only
B 3 bonds normally
C 4 bonds
N 3 bonds (uncharged species) 4 bonds (charged species)
O 2 bonds (normally) 1 or 3 bonds if non-zero formal charges are present
F 1 bond normally. The other halogens are 1 bond when terminal.
When in doubt, try something.
3. Place a pair of electrons between every pair of atoms which are bonded.

Subtract the number of electrons used for bonding from the total number of valence electrons available.
4. Complete the octet on the remaining atoms with lone-pairs.

Remember, certain atoms do not fill their octet
5. If the octets cannot be filled on all appropriate atoms, make multiple bonds.

Structures that exhibit resonance are usually stable
Certain atoms can expand their octet as necessary, namely the period 3 and greater elements.

Geometry/Shape Review VSEPR THEORY

Scheme Bonding Picture Geometry* \qquad
\qquad
Compounds without lone pairs on central atom

Compounds with lone pairs on central atom

: $\mathrm{AB}_{\mathbf{2}}$		Trigonal planar	Bent
$: \ddot{A}_{\mathbf{2}}$		Tetrahedral	Bent
: AB_{3}	i	Tetrahedral	Trigonal pyramidal
: $\mathbf{A B}_{\mathbf{4}}$		Trigonal bipyramidal	Distorted tetrahedral
$: \ddot{A} B_{2}$	$\int_{-A \ldots}^{8}:$	Trigonal bipyramidal	Linear
: AB_{5}		Octahedral	Square pyramidal
$: \ddot{A B}_{4}$		Octahedral	Square planar

[^0]
VALENCE BOND THEORY AND HYBRIDIZATION

Hybridization: Mixing of non-equivalent atomic orbitals (AO's) to generate a new set of degenerate hybrid orbitals.

1. Does not occur on isolated atoms - only atoms used in bonding. Does not occur on terminal atoms.
2. Hybridization occurs to the extent that the electronic geometry predicted by VSEPR is produced.
3. Orbitals being hybridized must be in the same principle quantum shell.
4. Number of hybrids produced is equal to number of AO's used.
5. Requires energy: stabilization obtained by bond energy and repulsion stabilization.
6. Covalent bonds form as normal - i.e., orbital overlap to share a pair of electrons.

Lewis Symbolism, Molecular Structure (VSEPR), and Hybridization (VB Theory)

1. Draw the Lewis structures for the following molecules or ions:
$\mathrm{CH}_{2} \mathrm{Cl}_{2}$
$\mathrm{NH}_{4}{ }^{+}$
HCN
$\mathrm{CO}_{3}{ }^{2-}$

$$
\mathrm{C}_{2} \mathrm{H}_{4}
$$

$\mathrm{CH}_{3} \mathrm{CO}_{2} \mathrm{H}$
2. Draw the Lewis structure of benzene, $\mathrm{C}_{6} \mathrm{H}_{6}$. Benzene is a 6 -carbon ring molecule. Show also the conventionally used abbreviated drawing of benzene.
3. Draw the Lewis structure of parahydroxybenzoic acid, $\left(\mathrm{PABA}, \mathrm{C}_{7} \mathrm{H}_{6} \mathrm{O}_{3}\right)$. PABA is an excellent UVradiation absorber once used in sunscreens. As the name implies, PABA contains the benzene ring and the carboxylic acid group. The prefix "para" means "across the ring".
5. Two kinds of covalent bonds exist; nonpolar covalent and polar covalent. Describe the carbonhydrogen bond in CH_{4} as either polar or nonpolar.
6. Draw the Lewis structures of the following molecules or ions. For each, indicate the electronic geometry, molecular geometry, hybridization (if any) of central atoms, and whether the molecule or ion possesses a permanent dipole moment.
$\mathrm{PO}_{4}{ }^{3-}$
SeO_{2}
$\mathrm{N}_{2} \mathrm{H}_{4}$
electronic geometry \qquad
molecular geometry
hybridization
Dipole Moment

\qquad
$\mathrm{C}_{2} \mathrm{H}_{2}$
electronic geometry \qquad
\qquad
\qquad
molecular geometry \qquad
\qquad
\qquad
hybridization \qquad
\qquad
\qquad
Dipole Moment \qquad
\qquad
\qquad
$\mathrm{NO}_{2}{ }^{-}$
$\mathrm{SeO}_{4}{ }^{2-}$
$\mathrm{N}_{2} \mathrm{~F}_{2}$
electronic geometry
molecular geometry
hybridization \qquad
Dipole Moment
SO_{3}
$\mathrm{CF}_{2} \mathrm{Cl}_{2}$
$\mathrm{C}_{2} \mathrm{H}_{4}$
electronic geometry \qquad
\qquad
\qquad
molecular geometry \qquad
\qquad
\qquad
hybridization \qquad
Dipole Moment \qquad
\qquad
\qquad

NO

electronic geometry
molecular geometry
hybridization
Dipole Moment
\qquad
\qquad
\qquad
\qquad
7. Shown below is the molecule caffeine. Describe the hybridization of every atom that uses hybridized atomic orbitals for bonding. Determine the approximate bond angles. Also indicate the type of bonds formed between atoms (i.e., $\sigma\left(\mathrm{sp}^{2}-\mathrm{p}\right)$, $\pi(\mathrm{p}-\mathrm{p})$, etc.) Notice that lone-pairs are omitted but assumed present; this convention is typical of many drawings of organic molecules.

Chapter 12, 13

Intermolecular Forces: Liquids and Solids and Solutions

Hydrogen Bonding in the Double-Helix

Copytget: O Pownco Efucation, inc, pubtshing as fieripmin Cummings.

Dipole Moments of Selected Molecules. Unspecified temperatures are assumed to be $25^{\circ} \mathrm{C}$

Compound	Dipole Moment (D)	
Cyclohexane	0	$\left(20^{\circ} \mathrm{C}\right)$
Cyclopentane	0	
Heptane	0	
Iso-octane	0	$\left(20^{\circ} \mathrm{C}\right)$
Pentane	0	
Hexane	0.08	
Toluene	0.31	$\left(20^{\circ} \mathrm{C}\right)$
1,4-Dioxane	0.45	
o-Xylene	0.45	
Dichloromethane	1.14	
Chloroform	1.15	
Ethyl Ether (diethyl ether)	1.15	$\left(20^{\circ} \mathrm{C}\right)$
2-Chlorophenol	1.24	
Dimethyl ether	1.30	
Methyl t-Butyl Ether	1.32	
o-Cresol	1.35	
Phenol	1.49	
Chlorobenzene	1.56	
Bromobenzene	1.56	
p-Cresol	1.58	
m-Cresol	1.61	
Ethyl Alcohol (ethanol)	1.66	$\left(20^{\circ} \mathrm{C}\right)$
2-Propanol	1.66	$\left(30^{\circ} \mathrm{C}\right)$
Methanol	1.69	$\left(20^{\circ} \mathrm{C}\right)$
Glyme	1.71	
1-Butanol	1.75	
Tetrahydrofuran	1.75	
Isobutyl Alcohol	1.79	
Ethylene Dichloride	1.83	
n-Butyl Acetate	1.84	$\left(22^{\circ} \mathrm{C}\right)$
Water	1.87	$\left(20^{\circ} \mathrm{C}\right)$
Ethyl Acetate	1.88	
1,3-Dioxane	1.90	
1-Chlorobutane	1.90	
2-Methoxyethanol	2.04	
3-Chlorophenol	2.08	
o-Dichlorobenzene	2.14	$\left(20^{\circ} \mathrm{C}\right)$
4-Chlorophenol	2.24	
Pyridine	2.37	
Acetone	2.69	$\left(20^{\circ} \mathrm{C}\right)$
Methyl n-Propyl Ketone	2.70	$\left(20^{\circ} \mathrm{C}\right)$
Methyl Ethyl Ketone	2.76	
1-Propanol	3.09	$\left(20^{\circ} \mathrm{C}\right)$
2-Nitrophenol	3.12	
Acetonitrile	3.44	$\left(20^{\circ} \mathrm{C}\right)$
Dimethyl Acetamide	3.72	
3-Nitrophenol	3.76	
N, N-Dimethylformamide	3.86	
N-Methylpyrrolidone	4.09	$\left(30^{\circ} \mathrm{C}\right)$
Dimethyl Sulfoxide	4.1	
4-Nitrophenol	4.72	
Propylene Carbonate	4.94	$\left(20^{\circ} \mathrm{C}\right)$

Intermolecular Forces

1. From Lange's Handbook of Chemistry, $13^{\text {th }}$ Ed. (McGraw Hill), we find $\Delta H_{\text {vap }}$ for $\mathrm{H}_{2} \mathrm{O}$ to be 40.7 $\mathrm{kJ} / \mathrm{mol}$. We also know the vapor pressure of water at $100^{\circ} \mathrm{C}$. Calculate the vapor pressure of water at $25.0^{\circ} \mathrm{C}$ in a closed container.
2. The vapor pressure and associated temperatures for ethanol were found in the CRC Handbook of Chemistry and Physics. Determine $\Delta H_{\text {vap }}$ for ethanol from these data. Is it different from water? Why?

v.p. $(\mathbf{m m ~ H g})$	Temp $\left({ }^{\circ} \mathbf{C}\right)$
40.0	19.0
400.0	63.5
760.0	78.4

3. The vapor pressures measured at several temperatures for benzene are shown in the table. Calculate the normal boiling point (1 atm) for benzene. (The literature value is $80.1^{\circ} \mathrm{C}$)

Temp $\left({ }^{\circ} \mathbf{C}\right)$	$\mathbf{v . p .}$ $(\mathbf{k P a})$
0.0	4.11
10.0	6.77
20.0	10.78
40.0	25.00

4. How much energy is needed to melt an ice cube (at constant temperature) that has a mass of 28.0 g ? $\left(\Delta H_{\text {fusion }}=6.02 \mathrm{~kJ} \mathrm{~mol}^{-1}\right)$
5. How much energy is required to convert 28.0 g of ice at $-12.0^{\circ} \mathrm{C}$ to steam at $100^{\circ} \mathrm{C}$ in a closed vessel? (Hint: What information not listed will be needed?)

Solutions I: Saturated and Unsaturated Solutions

1. The concentration of dissolved oxygen from the air at 1.0 atm in sea water is $3.1 \times 10^{-4} \mathrm{M}$ at $25^{\circ} \mathrm{C}$. Predict the concentration of dissolved oxygen in sea water at a partial pressure O_{2} of 1.0 atm (i.e., pure oxygen).
2. A solution of KNO 3 is prepared carefully to be 28.0 g of solid dissolved in 200.0 g of water, then slowly cooled to $0.0^{\circ} \mathrm{C}$. No crystallization occurs. Is the solution unsaturated, saturated, or supersaturated? $\left(s_{\mathrm{KNO}_{3}}^{\mathrm{o}^{\circ} \mathrm{C}}=13.3 \mathrm{~g} / 100 \mathrm{~g} \mathrm{H}_{2} \mathrm{O}\right)$
3. When a seed crystal is added, some solid precipitates from the solution prepared in question 2. Predict the quantity of solid that precipitates.
4. What is the molal concentration of the solution prepared by dissolving 60.0 g of glucose $\left(\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}\right.$, $180.2 \mathrm{~g} / \mathrm{mol}$) in 100.0 mL of water?
5. What quantity of methanol $\left(\mathrm{CH}_{3} \mathrm{OH}\right)$ must be added to 250.0 g of water to make a 0.25 m solution?

A Short Interlude: Vapor Pressure Lowering

The colligative property of vapor pressure lowering is best explained from the perspective of entropy. Entropy is an important "driving force" (certainly a misnomer phrase, but let's keep going) in physical and chemical processes. Entropy is a measure of the number of different microstates ("microscopic states") a system can be in. "Disorder" is only one possible microstate: entropy is really more complicated than that and includes all of the possible microscopic configurations the system can have.

Molecules at the surface of a liquid enter the gas phase, in part, because they have sufficient kinetic energy to escape the intermolecular forces holding them to the liquid. Accompanying this phase transition is a concomitant increase in entropy; i.e., the entropy of the liquid is lower than the entropy of the gas.

Now, make a solution of a non-volatile solute in the liquid. The $\Delta H_{\text {vap }}$ for a dilute solution changes very little but the entropy of the solution starts higher than the pure liquid. There are more possible microstates that the solution can be in with the added solute. However, the vapor above the solution has the same entropy as the vapor above the pure solvent. Having the same $\Delta H_{\text {vap }}$, the energy required to release a solvent molecule from the liquid remains unchanged.

This means that the entropy gain for the solvent going from solution to vapor is comparatively less than that for pure solvent going to the vapor phase. There is less "driving force" to go into the vapor phase and, thus, a lower vapor pressure.

Some texts, and even some teachers, explain this phenomenon as resulting from the solute particles somehow "blocking" the escape of solvent molecules. This is just wrong. Think about it: how many solute particles would you need at the surface to prevent the solvent from escaping? What if the intermolecular forces between solute and solvent were stronger than solvent and solvent? I suspect this "blocking" explanation is given as a simplified rationalization for vapor pressure lowering but it succeeds only in introducing a misconception and avoidance of thermodynamics.

Problem

The vapor pressure of water at $25^{\circ} \mathrm{C}$ is 23.8 mmHg . What is the vapor pressure of a solution of 10.0 g of glucose $\left(\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}, 180.16 \mathrm{~g} / \mathrm{mol}\right)$ in 100.0 g of water?

Solutions II: Colligative Properties

 100.0 g of water?
2. What is the predicted freezing point of the solution from (1)?
3. How many gallons of antifreeze (ethylene glycol) must be added to 4.0 gallons of water to lower the freezing point of the solution to $-10.0^{\circ} \mathrm{F}$ (a fairly bad winter day on the east coast)? (Hint: You will probably need to use the CRC Handbook of Chemistry and Physics, Merck Index, or other resource to get some of the information you need.)
4. A solution of the male hormone, testosterone, containing 0.363 g of the hormone in 5.00 g of benzene has a freezing point of $4.27^{\circ} \mathrm{C}$. What is the molar mass of testosterone? The freezing point of pure benzene is $5.50^{\circ} \mathrm{C}$. Additional data: A solution of 1.13 g of naphthalene $\left(\mathrm{C}_{10} \mathrm{H}_{8}\right)$ in 10.00 g of benzene had a freezing point of $0.99^{\circ} \mathrm{C}$.)
5. Testosterone contains only carbon, hydrogen, and oxygen. The percentage composition of the molecule is $79.12 \% \mathrm{C}$ and $9.79 \% \mathrm{H}$. What is the molecular formula and accurate molar mass?

Colligative Properties: Freezing Point Depression, Vapor Pressure Lowering,Boiling Point Elevation Additional Problems

1. Adding a nonvolatile ionic solute to water has what effect on the boiling point of the solvent?
$\ldots \square$ Does not affect the b.p.
... \square Lower the b.p.
$\ldots \square$ Raises the b.p.
$\ldots \square$ Cannot tell without more information, such as concentration
2. What is the van't Hoff factor?
3. What is a colligative property (a definition; not "it's freezing point depression", etc.)
4. Give an example of a colligative property other than freezing point depression.
5. What is the equation that relates the freezing point depression and concentration? Define each variable.
6. Calculate the molal concentration of a sucrose $\left(\mathrm{C}_{12} \mathrm{H}_{22} \mathrm{O}_{11}\right)$ solution that is prepared by dissolving 10.0 g of the solid in 150.0 g of water.
7. What is the freezing point of the solution prepared in question 6? The molal freezing point depression constant for water is $1.86^{\circ} \mathrm{C} / \mathrm{m}$.
8. A certain pheromone from the gypsy moth has a percentage composition of $79.12 \% \mathrm{C}, 9.79 \% \mathrm{H}$ and $11.09 \% \mathrm{O}$. A solution containing 0.363 g of the compound in 5.00 g of benzene freezes at $4.27^{\circ} \mathrm{C}$. What is the molar mass of the pheromone and what is its molecular formula? $K_{\mathrm{f}, \text { benzene }}=5.12^{\circ} \mathrm{C} / \mathrm{m}$.
9. Assuming complete dissociation of the solid, what is the predicted melting point of a 1.5 m solution of sodium chloride?
10. Draw a typical cooling curve for a pure solvent. Draw the cooling curve for a $1-\mathrm{m}$ solution of the same solvent which has a molal freezing point depression constant of $2.0^{\circ} \mathrm{C} / \mathrm{m}$. Identify each region of the curve.
11. The vapor pressure of water at $25.0^{\circ} \mathrm{C}$ is 23.8 torr. What is the vapor pressure of a solution of 10.0 g of glucose $\left(\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}, 180.2 \mathrm{~g} \mathrm{~mol}^{-1}\right)$ dissolved in 100.0 g of water?
12. Assume no deviation from ideal behavior, what is the vapor pressure at $25^{\circ} \mathrm{C}$ of the solution prepared by mixing 50.0 mL of benzene with 50.0 mL of hexane? Some important information is given in the table. Not all information may be necessary.

Property	Hexane	Benzene
Formula	$\mathrm{C}_{6} \mathrm{H}_{14}$	$\mathrm{C}_{6} \mathrm{H}_{6}$
Vapor Pressure at $25^{\circ} \mathrm{C}(\mathrm{mm} \mathrm{Hg})$	151.6	95.1
Density $(\mathrm{g} / \mathrm{mL})$	0.659	0.874
Normal boiling point $\left({ }^{\circ} \mathrm{C}\right)$	68.7	80.1

13. Starting with a 454 g block of ice at $0.0^{\circ} \mathrm{C}$, how much energy is needed to melt the ice and heat the liquid water produced to $100^{\circ} \mathrm{C}$ but not evaporate the water? (some possibly useful information: $\Delta H_{\text {fusion }}=6.02 \mathrm{~kJ} \mathrm{~mol}^{-1}, \Delta H_{\text {vap }}=40.7 \mathrm{~kJ} \mathrm{~mol}^{-1}$, specific heat, water $=4.18 \mathrm{~J} / \mathrm{mol} \mathrm{K}$)
14. The enthalpy of combustion of methane, CH_{4}, is $-890 \mathrm{~kJ} / \mathrm{mol}$. What mass of methane will be consumed in the above process? Assume 100% energy transfer to the system.
15. If the gas flowrate of the methane to the burner of a stove is $5 \mathrm{~L} / \mathrm{min}$ at $25^{\circ} \mathrm{C}$ and assuming complete heat transfer from combustion to the container containing the ice, quantitatively predict how long it would take for the ice to be converted to water at $100^{\circ} \mathrm{C}$?

An Application of the van't Hoff Factor in Acid/Base Equilibrium

The freezing point of 0.10 m acetic acid is $-0.19^{\circ} \mathrm{C}$. What is the van't Hoff factor for acetic acid at this concentration and what fraction (in percentage) of the acetic acid molecules are ionized?

Hints:

$$
\begin{gathered}
i=\frac{\Delta T_{\text {measured }}}{\Delta T_{\text {theoretical }}} \\
\text { percentage ionization }=\frac{\left[\mathrm{H}^{+}\right]}{C_{\text {total acetic acid }}} \times 100=\frac{\left[\mathrm{CH}_{3} \mathrm{CO}_{2}^{-}\right]}{C_{\text {total acetic acid }}} \times 100
\end{gathered}
$$

Chapter 14

Chemical Kinetics

CHEMICAL KINETICS CHAPTER 15

INTRODUCTION

A properly written chemical equation tells that a reaction may occur to yield certain products. The rate of the reaction or how fast the reaction proceeds is, however, only experimentally determined. The field of chemistry dedicated to the study of reaction rates and the mechanism by which products are formed is known as chemical kinetics and mechanisms. The focus of lecture for this chapter is on chemical kinetics.

GOALS

1. You should be able to describe the rate of reaction as a change in concentration per change in time for any species in the reaction.
2. You should be able to take graphical data and deduce average and instantaneous rates.
3. From experimental data, it is possible to derive the rate law and from the rate law calculate rates of reactions for experimental conditions.
4. Three reaction orders have been explicitly covered: zeroeth-, first-, and second-order. An understanding of the how a rate plot would look and how to analyze for each of these is important.
5. You should be comfortable with using the integrated rate law for 1 st- and 2 nd-order reactions and understand how to calculate and use half-life.

DEFINITIONS

You should have a working knowledge of at least these terms and any others used in lecture.
First-order reaction Overall reaction order Instantaneous rate

Second-order reaction
Zeroeth-order reaction
Rate law

Overall reaction order
Integrated rate law
Half-life
Rate constant Mechanism

Chemical Kinetics, Reaction Rates, and the Rate Law

1. Consider the following reaction

$$
\mathrm{CO}(\mathrm{~g})+\mathrm{NO}_{2}(\mathrm{~g}) \rightarrow \mathrm{CO}_{2}(\mathrm{~g})+\mathrm{NO}(\mathrm{~g})
$$

The kinetic data of initial reaction rate were collected for the initial concentration conditions. The rates are average initial rates, obtained graphically from the original kinetic data. Use the method of initial rates to determine the rate law and rate constant.

	$[\mathrm{CO}]_{0}$ (M)	$\left[\mathrm{NO}_{2}\right]_{0}$ (M)	Initial Rate $(\mathrm{M} / \mathrm{h})$
1	5.1×10^{-4}	0.35×10^{-4}	3.4×10^{-8}
2	5.1×10^{-4}	0.70×10^{-4}	6.8×10^{-8}
3	5.1×10^{-4}	0.18×10^{-4}	1.7×10^{-8}
4	1.0×10^{-3}	0.35×10^{-4}	6.8×10^{-8}
5	1.5×10^{-3}	0.35×10^{-4}	10.2×10^{-8}

2. A first-order reactions proceeds with a rate constant of $0.020 / \mathrm{s}$. If the initial concentration of the reactant is 0.012 M , what will be the concentration after 30 s ?
3. Referring to the previous question, what fraction of starting material remains after 15 s ?
4. What is the half-life of this reaction?
5. Radioactive isotopes decay obeying a first-order kinetic rate law. Tritium, a radioactive isotope of hydrogen, has a half-life of 12.3 y . It has a natural abundance of 10^{-18} percent (by mol). What mass of tritium (atomic weight 3.016 u) is present in 1000 kg of water? After 100 years, what mass of tritium will remain?

Temperature Dependence on the Rate Constant

1. Experiment

Determine the activation energy for the reaction

$$
\mathrm{S}_{2} \mathrm{O}_{8}{ }^{2-}+2 \mathrm{I}^{-} \rightarrow 2 \mathrm{SO}_{4}{ }^{2-}+\mathrm{I}_{2}
$$

The rate law for the reaction is

$$
\text { Rate }=\mathrm{k}\left[\mathrm{~S}_{2} \mathrm{O}_{8}{ }^{2-}\right][\mathrm{I}]
$$

Experimental Setup:

	Volumes of Reagents (mL)							
	Temp $\left({ }^{\circ} \mathrm{C}\right)$	0.20 M NaI	0.010 M $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$	2% Starch Indicator	Water	0.20 M $\mathrm{K}_{2} \mathrm{~S}_{2} \mathrm{O}_{8}$	Reaction Time (s)	
1								
2								
3								
4								
5								

For reasons we won't go into here:

$$
\text { Rate }=\frac{\Delta\left[\mathrm{S}_{2} \mathrm{O}_{8}^{2-}\right]}{t_{\mathrm{rxn}}}=\frac{1}{2} \frac{\Delta\left[\mathrm{~S}_{2} \mathrm{O}_{3}^{2-}\right]_{0}}{t_{\mathrm{rxn}}}
$$

	Rate (M/s)	Rate Constant
1		
2		
3		
4		
5		

2. The reaction to produce ethyl alcohol from ethyl iodide

$$
\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{I}+\mathrm{OH}^{-} \rightarrow \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}+\mathrm{I}^{-}
$$

was studied at several temperatures. The following rate constants for the reaction were determined:

Temperature $\left({ }^{\circ} \mathrm{C}\right)$	Rate Constant $\left(\mathrm{M}^{-1} \mathrm{~s}^{-1}\right)$
15.83	5.03×10^{-5}
32.02	3.68×10^{-4}
59.75	6.71×10^{-3}
90.61	0.119

Determine the activation energy of the reaction graphically and by using the Arrhenius equation.
3. The following reaction is possibly important in the catalytic hydrogenation of alkene hydrocarbons. Determine the activation energy for the reaction.

What is the rate constant for the reaction at $25^{\circ} \mathrm{C}$?

Data	
Temp $\left({ }^{\circ} \mathrm{C}\right)$	Rate Constant $\left(\mathrm{s}^{-1}\right)$
-60.0	1.3×10^{-3}
-70.0	2.4×10^{-4}
-80.0	5.8×10^{-5}

Chemical Kinetics: Additional Problems

1. In the reaction

$$
\mathrm{CH}_{3} \mathrm{Br}(\mathrm{aq})+\mathrm{OH}^{-}(\mathrm{aq}) \rightarrow \mathrm{CH}_{3} \mathrm{OH}(\mathrm{aq})+\mathrm{Br}^{-}(\mathrm{aq})
$$

when the OH^{-}concentration alone was doubled, the rate doubled; when the $\mathrm{CH}_{3} \mathrm{Br}$ concentration alone was increased by a factor of 1.2 , the rate increased by a factor of 1.2 . Write the rate law for the reaction.
2. In the reaction

$$
2 \mathrm{NO}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{NO}_{2}(\mathrm{~g})
$$

when the NO concentration alone was doubled, the rate increased by a factor of 4 ; when both the NO and the O_{2} concentrations were increased by a factor of 2 , the rate increased by a factor of 8 . What is the rate law for the reaction?
3. The following kinetic data were obtained for the reaction

$$
2 \mathrm{ICl}(\mathrm{~g})+\mathrm{H}_{2}(\mathrm{~g}) \rightarrow \mathrm{I}_{2}(\mathrm{~g})+2 \mathrm{HCl}(\mathrm{~g})
$$

Initial
Concentration
($\mathrm{mmol} \mathrm{L}^{-1}$)

Experiment	$[\mathrm{ICl}]_{\mathrm{o}}$	$\left[\mathrm{H}_{2}\right]_{\mathrm{o}}$	Initial Rate $\left(\mathrm{mmol} \cdot \mathrm{L}^{-1} \mathrm{~s}^{-1}\right)$
1	1.5	1.5	3.7×10^{-7}
2	3.0	1.5	7.4×10^{-7}
3	3.0	4.5	2.2×10^{-6}
4	4.7	2.7	$?$

(a) Write the rate law for the reaction.
(b) From the data, determine the value of the rate constant.
(c) Use the data to predict the reaction rate for Experiment 4.
4. The following kinetic data were obtained for the reaction

$$
\mathrm{A}(\mathrm{~g})+2 \mathrm{~B}(\mathrm{~g}) \rightarrow \text { product. }
$$

Initial
Concentration
($\mathrm{mmol} \cdot \mathrm{L}^{-1}$)

Experiment	$[\mathrm{A}]_{\mathrm{o}}$	$[\mathrm{B}]_{\mathrm{o}}$	Initial Rate $\left(\mathrm{mmol} \cdot \mathrm{L}^{-1} \mathrm{~s}^{-1}\right)$
1	0.60	0.30	1.6
2	0.20	0.30	1.4
3	0.60	0.10	4.2
4	0.17	0.25	$?$

(a) What is the order with respect to each reactant and the overall order of the reaction?
(b) Write the rate law for the reaction.
(c) From the data, determine the value of the rate constant.
(d) Use the data to predict the reaction rate for Experiment 4.
5. The following data were obtained for the reaction

	$\mathrm{A}+\mathrm{B}+\mathrm{C} \rightarrow$ products: Initial Concentration $\left(\mathrm{mmol} \mathrm{L}^{-1}\right)$ Experiment	$[\mathrm{A}]_{0}$		
1	1.25	$1 \mathrm{~B}]_{0}$	$[\mathrm{C}]_{0}$	Initial Rate $\left((\mathrm{mmol} \mathrm{A}) \cdot \mathrm{L}^{-1} \mathrm{~s}^{-1}\right)$
2	2.50	1.25	1.25	8.7
3	1.25	3.02	1.25	17.4
4	1.25	3.02	3.75	50.8
5	3.01	1.00	1.15	457

(a) Write the rate law for the reaction.
(b) What is the order of the reaction?
(c) Determine the value of the rate constant.
(d) Use the data to predict the reaction rate for Experiment 5.

6 Determine the rate constant for each of the following first- order reactions, in each case expressed for the rate of loss of A :
(a) $\mathrm{A} \rightarrow \mathrm{B}$, given that the concentration of A decreases to one-half its initial value in 1000 s
(b) $\mathrm{A} \rightarrow \mathrm{B}$, given that the concentration of A decreases from $0.67 \mathrm{~mol}^{-1}$ to $0.53 \mathrm{~mol}^{-1}$ in 25 s
(c) $2 \mathrm{~A} \rightarrow \mathrm{~B}+\mathrm{C}$, given that $[\mathrm{A}]_{\mathrm{o}}=0.153 \mathrm{~mol} \mathrm{~L}^{-1}$ and that after 115 s the concentration of B rises to $0.034 \mathrm{~mol} \mathrm{~L}^{-1}$.
7. Determine the rate constant for each of the following first- order reactions:
(a) $2 \mathrm{~A} \rightarrow \mathrm{~B}+\mathrm{C}$, given that the concentration of A decreases to one-fourth its initial value in 38 min
(b) $2 \mathrm{~A} \rightarrow \mathrm{~B}+\mathrm{C}$, given that $[\mathrm{A}]_{\mathrm{o}}=0.039 \mathrm{~mol} \mathrm{~L}^{-1}$ and that after 75 s the concentration of B increases to $0.0095 \mathrm{~mol} \mathrm{~L}^{-1}$
(c) $2 \mathrm{~A} \rightarrow 3 \mathrm{~B}+\mathrm{C}$, given that $[\mathrm{A}]_{\mathrm{o}}=0.040 \mathrm{molL}$ and that after 8.8 min the concentration of B rises to $0.030 \mathrm{~mol} \mathrm{~L}^{-1}$.
In each case, write the rate law for the rate of loss of A .
8. Dinitrogen pentoxide, $\mathrm{N}_{2} \mathrm{O}_{5}$, decomposes by first-order kinetics with a rate constant of $3.7 \times 10^{-5} \mathrm{~s}^{-1}$ at 298 K.
(a) What is the half-life (in hours) for the decomposition of $\mathrm{N}_{2} \mathrm{O}_{5}$ at 298 K ?
(b) If $\left[\mathrm{N}_{2} \mathrm{O}_{5}\right]_{0}=0.0567 \mathrm{~mol} \mathrm{~L}^{-1}$, what will be the concentration of $\mathrm{N}_{2} \mathrm{O}_{5}$ after 3.5 h ?
(c) How much time (in minutes) will elapse before the $\mathrm{N}_{2} \mathrm{O}_{5}$ concentration decreases from 0.0567 $\mathrm{mol} \mathrm{L}^{-1}$ to $0.0135 \mathrm{~mol} \mathrm{~L}^{-1}$?
9. The half-life for the first-order decomposition of A is 355 s . How much time must elapse for the concentration of A to decrease to (a) one-fourth; (b) 15% of its original value; (c) one-ninth of its initial concentration?

Chapter 15-17

Chemical Equilibrium

Equilibrium I: Basic Principles and Calculations

Remember the important associations about mass actions and equilibrium constant

 expressions:\checkmark Reverse the direction the equation is written \rightarrow invert K
\checkmark Add chemical equations $\quad \rightarrow \quad$ multiply the K 's for the reactions \checkmark Increase stoichiometric coefficients by a factor $\rightarrow \quad$ raise K to the power of factor

1. What is the calculated K_{c} for

$$
2 \mathrm{H}_{2(\mathrm{~g})}+\mathrm{O}_{2(\mathrm{~g})} \rightleftarrows 2 \mathrm{H}_{2} \mathrm{O}_{(\mathrm{g})}
$$

given the the following reactions:

$$
\begin{array}{ll}
\mathrm{CO}_{2}(\mathrm{~g})+\mathrm{H}_{2}(\mathrm{~g}) \rightleftarrows \mathrm{CO}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{~g}) & K_{\mathrm{c}}=1.4 \\
\mathrm{C}(\mathrm{~s})+\frac{1}{2} \mathrm{O}_{2}(\mathrm{~g}) \rightleftarrows \mathrm{CO}(\mathrm{~g}) & K_{\mathrm{c}}=1.0 \times 10^{8} \\
\mathrm{C}(\mathrm{~s})+\mathrm{CO}_{2}(\mathrm{~g}) \rightleftarrows 2 \mathrm{CO}(\mathrm{~g}) & K_{\mathrm{c}}=0.64
\end{array}
$$

2. For the reaction:

$$
\mathrm{COCl}_{2}(\mathrm{~g}) \rightleftarrows \mathrm{CO}(\mathrm{~g})+\mathrm{Cl}_{2}(\mathrm{~g}) \quad K_{\mathrm{c}}=8.3 \times 10^{-4}\left(395^{\circ} \mathrm{C}\right)
$$

a. What direction will the reaction proceed if 0.100 mol of COCl_{2} is placed in a 2.0 L container and heated to $395^{\circ} \mathrm{C}$?
b. What direction will the reaction proceed if 0.030 mol of each gas are placed in a 2.0 L vessel and heated?
c. For question a, what is the final concentration of each gas?
d. For question b, what is the final concentration of each gas?
3. A quantity of 0.10 mol of I_{2} and $0.10 \mathrm{~mol} \mathrm{H}_{2}$ are placed in a $1.00-\mathrm{L}$ reaction vessel at $430^{\circ} \mathrm{C}$. Calculate the equilibrium concentration of all species after equilibrium has been established.

$$
\mathrm{H}_{2}(\mathrm{~g})+\mathrm{I}_{2}(\mathrm{~g}) \rightleftarrows 2 \mathrm{HI}(\mathrm{~g}) \quad K_{\mathrm{c}}=54.3
$$

4. The K_{c} for the reaction

$$
\mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \rightleftarrows 2 \mathrm{NH}_{3}(\mathrm{~g})
$$

At $300^{\circ} \mathrm{C}$ is 0.45 . Predict whether the reaction will proceed to the right, left, or is already at equilibrium when $0.10 \mathrm{~mol} \mathrm{~N}_{2}, 0.30 \mathrm{~mol} \mathrm{H}_{2}$, and $0.2 \mathrm{~mol} \mathrm{NH}_{3}$ are placed in a 2.00-L container and heated to $300^{\circ} \mathrm{C}$. If a reaction occurs, what is the final concentration of each species?
5. The following quantities of reagents are introduced into a $1.00-\mathrm{L}$ reaction vessel: $0.15 \mathrm{~mol} \mathrm{H}_{2}, 0.23$ $\mathrm{mol} \mathrm{I}_{2}$, and 0.015 mol HI . The reaction vessel is then thermostatted at $430^{\circ} \mathrm{C}$. Convince yourself that the system is not at equilibrium and will shift right (to produce more product). What are the equilibrium concentrations of all species? (See problem 3 for additional information.)
6. For question 5, what will be the effect on the equilibrium concentrations if the volume of the container is reduced to 500.0 mL with no loss of reagents.
7. Consider the system at equilibrium in problem 4: what will be the new equilibrium concentrations if the volume of the container is reduced to 1.00 L with no loss of reactants or products?
8. Consider the system at equilibrium in problem 4: what will be the new equilibrium concentrations if the total pressure in the container is increased by adding 1.0 atm of helium gas?

Equilibrium Problems Using $\boldsymbol{K}_{\mathrm{p}}$

1. Nitrogen dioxide is a component of the brown smog seen over some industrialized cities. The brown nitrogen dioxide participates in an equilibrium with colorless dinitrogen tetraoxide according to the equation

$$
2 \mathrm{NO}_{2}(\mathrm{~g}) \rightleftarrows \mathrm{N}_{2} \mathrm{O}_{4}(\mathrm{~g})
$$

The $K_{\mathrm{p}, \mathrm{atm}}$ for the reaction is 7.5 at $298 \mathrm{~K}\left(25^{\circ} \mathrm{C}\right)$. What is the partial pressure of each gas (in atm) if 0.10 mol of $\mathrm{N}_{2} \mathrm{O}_{4}$ is placed in a 1.0 L container, sealed, and allowed to come to equilibrium at 298 K ?

Unimportant information pertaining to the problem: The $\mathrm{N}_{2} \mathrm{O}_{4}$ is transferred as a solid at $-100^{\circ} \mathrm{C}$ then the reaction vessel is sealed and the $\mathrm{N}_{2} \mathrm{O}_{4}$ allowed to vaporize at the experimental temperature.
2. Nitrogen dioxide is a component of the brown smog seen over some industrialized cities. The brown nitrogen dioxide participates in an equilibrium with colorless dinitrogen tetraoxide according to the equation

$$
2 \mathrm{NO}_{2}(\mathrm{~g}) \rightleftarrows \mathrm{N}_{2} \mathrm{O}_{4}(\mathrm{~g})
$$

The $K_{\mathrm{p}, \mathrm{atm}}$ for the reaction is 7.5 at 298 K . What is the partial pressure of each gas (in atm) if a $\mathrm{NO}_{2} / \mathrm{N}_{2} \mathrm{O}_{4}$ mixture, already at equilibrium, is introduced into a container to a total pressure of 150 mmHg ?

Equilibrium II: A Couple More Equilibrium Problems

1. A solution of 0.1 M acetic acid is about 1.4% ionized in water as measured by solution's electrical conductivity. What is K_{c} for

$$
\mathrm{CH}_{3} \mathrm{COOH}(\mathrm{aq}) \quad \rightleftarrows \quad \mathrm{CH}_{3} \mathrm{COO}^{-}(\mathrm{aq})+\mathrm{H}^{+}(\mathrm{aq})
$$

2. A quantity of 0.050 mol of SO_{2} gas and 0.025 mol of Cl_{2} gas are introduced into an evacuated 1.75 L flask and the following equilibrium is established at 303 K :

$$
\mathrm{SO}_{2} \mathrm{Cl}_{2}(\mathrm{~g}) \quad \rightleftarrows \quad \mathrm{SO}_{2}(\mathrm{~g})+\mathrm{Cl}_{2}(\mathrm{~g}) \quad K_{\mathrm{c}}=1.2 \times 10^{-3}
$$

What are the final concentrations of each gas?

Strong Acids		$\boldsymbol{K}_{\boldsymbol{a}}$	Conjugate Bases	
perchloric acid	HClO_{4}	large	perchlorate	$\mathrm{ClO}_{4}{ }^{-}$
hydroiodic acid	HI	large	iodide	I^{-}
hydrobromic acid	HBr	large	bromide	Br^{-}
hydrochloric acid	HCl	large	chloride	Cl^{-}
sulfuric acid	$\mathrm{H}_{2} \mathrm{SO}_{4}$	large	hydrogen sulfate	HSO_{4}^{-}
nitric acid	HNO_{3}	large	nitrate	$\mathrm{NO}_{3}{ }^{-}$

Weak Acids	Conjugate Bases			
hydrogen sulfate	$\mathrm{HSO}_{4}{ }^{-}$	1.1×10^{-2}	sulfate	$\mathrm{SO}_{4}{ }^{-}$
nitrous acid	HNO_{2}	7.2×10^{-4}	nitrite	$\mathrm{NO}_{2}{ }^{-}$
formic acid	$\mathrm{HCO}_{2} \mathrm{H}$	1.8×10^{-4}	formate	$\mathrm{HCO}_{2}{ }^{-}$
acetic acid	$\mathrm{CH}_{3} \mathrm{COOH}$	1.8×10^{-5}	acetate	$\mathrm{CH}_{3} \mathrm{COO}^{-}$
carbonic acid	$\mathrm{H}_{2} \mathrm{CO}_{3}$	4.4×10^{-7}	hydrogen carbonate	$\mathrm{HCO}_{3}{ }^{-}$
ammonium ion	NH_{4}^{+}	5.6×10^{-10}	ammonia	$\mathrm{NH}_{3}{ }^{-1}$
hydrogen carbonate	$\mathrm{HCO}_{3}{ }^{-}$	4.8×10^{-11}	carbonate	$\mathrm{CO}_{3}{ }^{-}$
ammonia	NH_{3}	very small	amide ion	$\mathrm{NH}_{2}{ }^{-}$

Equilibrium III: Basic Acid-Base Equilibrium

1. What are the species (equilibrium) concentrations of $\mathrm{H}_{3} \mathrm{O}^{+}, \mathrm{OH}^{-}$, and Cl^{-}in 0.10 M hydrochloric acid?
2. What are the concentrations of each species in a solution prepared to be 0.10 M acetic acid $\left(\mathrm{CH}_{3} \mathrm{COOH}\right) ? K_{\mathrm{a}}=1.75 \times 10^{-5}$
3. What is the approximate pH of 0.075 M formic acid? $K_{\mathrm{a}}=1.7 \times 10^{-4}$
4. What is the K_{a} of nitrous acid if a 0.050 M solution has a pH of 2.34 ?
5. What is the pH of 0.010 M ammonia? $K_{\mathrm{b}}=1.8 \times 10^{-5}$
6. Assuming that $K_{\mathrm{a}}=1.75 \times 10^{-5}$ for acetic acid, what is K_{b} for acetate ion? What is the pH of 0.010 M sodium acetate?

Equilibrium IV: Polyprotic Acid-Base Equilibrium

1. Calculate the approximate pH of a solution prepared to be 0.0010 M malonic acid $\left(\mathrm{H}_{2} \mathrm{C}_{3} \mathrm{H}_{2} \mathrm{O}_{4}\right.$, $K_{1}=1.5 \times 10^{-3}, K_{2}=2.0 \times 10^{-6}$).
2. Calculate the concentration of all species in $0.10 \mathrm{M} \mathrm{H}_{3} \mathrm{PO}_{4}$.

$$
K_{1}=7.5 \times 10^{-3} \quad K_{2}=6.2 \times 10^{-8} \quad K_{3}=4.8 \times 10^{-13}
$$

3. Calculate the pH of the solution prepared to be 0.015 M sodium malonate $\left(\mathrm{Na}_{2} \mathrm{C}_{3} \mathrm{H}_{2} \mathrm{O}_{4}\right)$

Equilibrium V: Acid-Base Buffers and Titrimetry

1. Calculate the pH of the solution which is prepared to be 0.10 M in nitrous acid and 0.15 M sodium nitrite.
2. What is the calculated pH of the buffer solution formed by dissolving 4.2 g of acetic acid and 9.0 g of sodium acetate in water and diluting to 500.0 mL ?
3. A 10.0 mL quantity of 0.1 M HCl is mixed with 95 mL of 0.15 M sodium nitrite. What is the pH of the new solution?
4. What is the calculated pH of the solution formed by mixing 10.0 mL of 0.15 M NaOH with 85 mL of 0.10 M benzoic acid?

Titration Problems

1. In 1 or 2 sentences, explain back-titration.
2. Name and give the formulas for any 2 different substances used in common antacids.
3. Write the reaction of HCl with one of the two substances listed in question 2. If you cannot answer question 2 , write the reaction of HCl with barium hydroxide.
4. To a 0.100 g sample of an antacid was added 50.00 mL of 0.100 M HCl . The antacid tablet dissolved and CO_{2} gas was produced. The solution was boiled and cooled to remove the last of the CO_{2}. Phenolphthalein was added to the solution and the excess HCl titrated with standard 0.100 M NaOH to the phenolphthalein endpoint. It required 3.00 mL of the NaOH .
a. What color is the phenolphthalein endpoint?
b. What is the number of moles of HCl neutralized per gram of antacid?
c. What is the percentage CaCO_{3} in the antacid?
5. 25 mL of 0.1 M acetic acid is titrated with 0.1 M NaOH . Calculate the pH of the solution after the addition of the following amounts of base. What acid-base indicator would be best to indicate endpoint?

0 mL of NaOH

1 mL

5 mL

25 mL

30 mL

For personal extra credit, calculate more points and plot the curve of pH vs Volume of base added. Then compare this curve to that obtained by titrating 25 mL of 0.1 M HCl with 0.1 M NaOH .

Chapter 19

Thermodynamics

Thermodynamics I: Basic Problems

Consider the reaction

$$
2 \mathrm{NO}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \quad \rightarrow \quad 2 \mathrm{NO}_{2}(\mathrm{~g})
$$

1. Calculate ΔG° from ΔH° and ΔS° at $25^{\circ} \mathrm{C}$
2. Calculate ΔG° from standard free energies of formation.
3. Calculate the thermodynamic equilibrium constant, K_{p}.
4. Determine the direction the reaction would proceed and the free energy when starting pressure of each gas is 0.33 atm .
5. What will be the total pressure in the container at equilibrium?
6. Estimate the K_{p} at $100.0^{\circ} \mathrm{C}$ assuming ΔH_{f}° and ΔS_{f}° remain constant at this temperature.
7. The standard free energy, ΔG°, for the acid dissociation of formic acid

$$
\mathrm{HCO}_{2} \mathrm{H}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{H}_{3} \mathrm{O}^{+}+\mathrm{HCO}_{2}^{-}
$$

is $21.4 \mathrm{~kJ} / \mathrm{mol}$. Determine the direction that the reaction will proceed and free energy of the reaction, in $\mathrm{kJ} / \mathrm{mol}$, when a mixture of formic acid and sodium formate are prepared with an initial concentration of 0.20 M formic acid and 0.10 M sodium formate in neutral pH water.
8. What is the pH of the final solution from problem 7? (Hint: don't get so hung up in thermodynamics calculations that you forget this is an equilibrium problem.)

Thermodynamics II: The Equilibrium Constant as a Function of Temperature

1. The Ostwald process is used to make sulfuric acid from sulfur trioxide, which is itself made from the combustion of sulfur. The first product in the combustion of sulfur is sulfur dioxide which then reacts with excess oxygen to form sulfur trioxide.

$$
\mathrm{SO}_{2}(\mathrm{~g})+\frac{1}{2} \mathrm{O}_{2}(\mathrm{~g}) \rightleftarrows \mathrm{SO}_{3}(\mathrm{~g}) \quad K_{\mathrm{p}}=2.7 \times 10^{12}\left(25^{\circ} \mathrm{C}\right)
$$

The sulfur trioxide produced is then passed through a fine mist of water. The sulfur trioxide reacts with the water to produce sulfuric acid.

$$
\mathrm{SO}_{3}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \rightleftarrows \mathrm{H}_{2} \mathrm{SO}_{4}(\mathrm{l}) \quad K=2.2 \times 10^{14}\left(25^{\circ} \mathrm{C}\right)
$$

Calculate the ΔH° for the reaction of sulfur trioxide with water.

Calculate the equilibrium constant for the reaction at the boiling point of sulfuric acid $\left(340^{\circ} \mathrm{C}\right)$.

[^0]: "Geometry refers to the electronic geometry
 \ddagger Shape refers to the molecular shape or molecular geometry

