HANDOUT SET

GENERAL CHEMISTRY II

Periodic Table of the Elements

1 IA	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18 VIIIA
1 H																	² He
1.00794	IIA	1										IIIA	IVA	VA	VIA	VIIA	4.00262
3	4											5	6	7	8	9	10
² Li	Ве											В	C	N	0	F	Ne
6.941	9.0122											10.811	12.011	14.0067	15.9994	18.9984	20.179
11	12											13	14	15	16	17	18
³ Na	Mg											Al	Si	P	S	Cl	Ar
22.9898	24.305	IIIB	IVB	VB	VIB	VIIB		VIIIB		IB	IIB	26.98154	28.0855	30.97376	32.066	35.453	39.948
19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
⁴ K	Ca	Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
39.0983	40.078	44.9559	47.88	50.9415	51.9961	54.9380	55.847	58.9332	58.69	63.546	65.39	69.723	72.59	74.9216	78.96	79.904	83.80
37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
⁵ Rb	Sr	Y	Zr	Nb	Mo	Тс	Ru	Rh	Pd	Aσ	Cd	In	Sn	Sb	Те	I	Xe
85.4678	87.62	88.9059	91.224	92.9064	95.94	(98)	101.07	102.9055	5 106.42	107.8682	112.41	114.82	118.710	121.75	127.60	126.9045	131.29
55	56	57	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86
⁶ Cs	Ba	La*	Hf	Та	W	Re	Os	Ir	Pt	Au	Ηø	TI	Pb	Bi	Po	At	Rn
132.9054	137.34	138.91	178.49	180.9479	183.85	186.207	190.2	192.22	195.08	196.9665	200.59	204.383	207.2	208.9804	(209)	(210)	(222)
87	88	89	104	105	106	107	108	109	110	111	112						
⁷ Fr	Ra	Ac**	Rf	Db	Sg	Bh	Hs	Mt			***						
(223)	226.0254	227.0278	(261)	(262)	(263)	(264)	(265)	(266)	(270)	(272)	(277)						
	*La	nthanides	58	59	60	61	62	63	64	65	66	67	68	69	70	71	
			Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dv	Ho	Er	Tm	Yb	Lu	
			140.12	140.9077	144.24	(145)	150.36	151.96	157.25	158.925	162.50	164.930	167.26	168.9342	173.04	174.967	
		-				· ·	•	•		·	ľ	•			•		
	**	Actinides	90	91	92	93	94	95	96	97	98	99	100	101	102	103	
			Th	Pa	\mathbf{U}	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr	
			232.038	231.0659	238.0289	237.0482	(244)	(243)	(247)	(247)	(251)	(252)	(257)	(258)	(259)	(260)	

Mass numbers in parenthesis are the mass numbers of the most stable isotopes. As of 1997 elements 110-112 have not been named.

***Peter Armbruster and Sigurd Hofman synthesized a single atom at the Heavy-Ion Research Center in Darmstadt, Germany in 1996. The atom survived for 280 μ s after which it decayed to element 110 by loss of an α -particle

Chapter 15 – 17

Chemical Equilibrium

Equilibrium I: Basic Principles and Calculations

Remember the important associations about mass actions and equilibrium constant expressions:

 \checkmark Reverse the direction the equation is written \rightarrow invert K \checkmark Add chemical equations \rightarrow multiply the K's for the reactions \checkmark Increase stoichiometric coefficients by a factor \rightarrow raise K to the power of factor

1. What is the calculated K_c for

$$2 \operatorname{H}_{2(g)} + \operatorname{O}_{2(g)} \rightleftharpoons 2 \operatorname{H}_{2}\operatorname{O}_{(g)}$$

given the the following reactions:

$$\begin{array}{rcl} \mathrm{CO}_2(\mathrm{g}) &+& \mathrm{H}_2(\mathrm{g}) \rightleftharpoons \mathrm{CO}(\mathrm{g}) &+& \mathrm{H}_2\mathrm{O}(\mathrm{g}) & K_\mathrm{c} = 1.4 \\ \mathrm{C}(\mathrm{s}) &+& \frac{1}{2}\mathrm{O}_2(\mathrm{g}) \rightleftharpoons \mathrm{CO}(\mathrm{g}) & K_\mathrm{c} = 1.0 \times 10^8 \\ \mathrm{C}(\mathrm{s}) &+& \mathrm{CO}_2(\mathrm{g}) \rightleftharpoons 2 \mathrm{CO}(\mathrm{g}) & K_\mathrm{c} = 0.64 \end{array}$$

2. For the reaction:

 $\operatorname{COCl}_2(g) \rightleftharpoons \operatorname{CO}(g) + \operatorname{Cl}_2(g) \quad K_c = 8.3 \times 10^{-4} (395^{\circ} \text{C})$

- a. What direction will the reaction proceed if 0.100 mol of COCl₂ is placed in a 2.0 L container and heated to 395°C?
- b. What direction will the reaction proceed if 0.030 mol of each gas are placed in a 2.0 L vessel and heated?
- c. For question a, what is the final concentration of each gas?
- d. For question b, what is the final concentration of each gas?

3. A quantity of 0.10 mol of I_2 and 0.10 mol H_2 are placed in a 1.00-L reaction vessel at 430°C. Calculate the equilibrium concentration of all species after equilibrium has been established.

 $H_2(g) + I_2(g) \rightleftharpoons 2 HI(g) \qquad K_c = 54.3$

4. The K_c for the reaction

 $N_2(g) + 3 H_2(g) \rightleftharpoons 2 NH_3(g)$

At 300°C is 0.45. Predict whether the reaction will proceed to the right, left, or is already at equilibrium when 0.10 mol N_2 , 0.30 mol H_2 , and 0.2 mol NH_3 are placed in a 2.00-L container and heated to 300°C. If a reaction occurs, what is the final concentration of each species?

5. The following quantities of reagents are introduced into a 1.00-L reaction vessel: 0.15 mol H₂, 0.23 mol I₂, and 0.015 mol HI. The reaction vessel is then thermostatted at 430°C. Convince yourself that the system is not at equilibrium and will shift right (to produce more product). What are the equilibrium concentrations of all species? (See problem 3 for additional information.)

6. For question 5, what will be the effect on the equilibrium concentrations if the volume of the container is reduced to 500.0 mL with no loss of reagents.

7. Consider the system at equilibrium in problem 4: what will be the new equilibrium concentrations if the volume of the container is reduced to 1.00 L with no loss of reactants or products?

8. Consider the system at equilibrium in problem 4: what will be the new equilibrium concentrations if the total pressure in the container is increased by adding 1.0 atm of helium gas?

1. Nitrogen dioxide is a component of the brown smog seen over some industrialized cities. The brown nitrogen dioxide participates in an equilibrium with colorless dinitrogen tetraoxide according to the equation

$$2 \operatorname{NO}_2(g) \rightleftharpoons \operatorname{N}_2\operatorname{O}_4(g)$$

The $K_{p,atm}$ for the reaction is 7.5 at 298K (25°C). What is the partial pressure of each gas (in atm) if 0.10 mol of N₂O₄ is placed in a 1.0 L container, sealed, and allowed to come to equilibrium at 298 K?

Unimportant information pertaining to the problem: The N_2O_4 is transferred as a solid at -100°C then the reaction vessel is sealed and the N_2O_4 allowed to vaporize at the experimental temperature.

2. Nitrogen dioxide is a component of the brown smog seen over some industrialized cities. The brown nitrogen dioxide participates in an equilibrium with colorless dinitrogen tetraoxide according to the equation

$$2 \operatorname{NO}_2(g) \rightleftharpoons \operatorname{N}_2\operatorname{O}_4(g)$$

The $K_{p,atm}$ for the reaction is 7.5 at 298K. What is the partial pressure of each gas (in atm) if a NO₂/N₂O₄ mixture, already at equilibrium, is introduced into a container to a total pressure of 150 mmHg?

1. A solution of 0.1 M acetic acid is about 1.4% ionized in water as measured by solution's electrical conductivity. What is K_c for

 $CH_3COOH(aq) \implies CH_3COO^{-}(aq) + H^{+}(aq)$

2. A quantity of 0.050 mol of SO_2 gas and 0.025 mol of Cl_2 gas are introduced into an evacuated 1.75 L flask and the following equilibrium is established at 303 K:

 $SO_2Cl_2(g) \rightleftharpoons SO_2(g) + Cl_2(g) \qquad K_c = 1.2 \times 10^{-3}$

What are the final concentrations of each gas?

Strong Acids		Ka	Conjugate Bases	
perchloric acid	HClO ₄	large	perchlorate	ClO ₄
hydroiodic acid	HI	large	iodide	ľ
hydrobromic acid	HBr	large	bromide	Br⁻
hydrochloric acid	HCl	large	chloride	Cl
sulfuric acid	H_2SO_4	large	hydrogen sulfate	HSO ₄ ⁻
nitric acid	HNO ₃	large	nitrate	NO ₃ ⁻
Weak Acids			Conjugate Bases	
hydrogen sulfate	HSO ₄ ⁻	1.1×10^{-2}	sulfate	SO_4^-
nitrous acid	HNO_2	7.2×10^{-4}	nitrite	NO_2^-
formic acid	HCO ₂ H	1.8×10^{-4}	formate	HCO_2^-
acetic acid	CH ₃ COOH	1.8×10^{-5}	acetate	CH ₃ COO ⁻
carbonic acid	H_2CO_3	4.4×10^{-7}	hydrogen carbonate	HCO ₃ ⁻
ammonium ion	$\mathrm{NH_4}^+$	5.6×10^{-10}	ammonia	NH ₃
hydrogen carbonate	HCO ₃ ⁻	4.8×10^{-11}	carbonate	CO_{3}^{2}
ammonia	NH ₃	very small	amide ion	NH_2^-

1. What are the species (equilibrium) concentrations of H_3O^+ , OH^- , and Cl^- in 0.10 M hydrochloric acid?

2. What are the concentrations of each species in a solution prepared to be 0.10 M acetic acid (CH₃COOH)? $K_a = 1.75 \times 10^{-5}$

3. What is the approximate pH of 0.075 M formic acid? $K_a = 1.7 \times 10^{-4}$

4. What is the K_a of nitrous acid if a 0.050 M solution has a pH of 2.34?

5. What is the pH of 0.010 M ammonia? $K_{\rm b} = 1.8 \times 10^{-5}$

6. Assuming that $K_a = 1.75 \times 10^{-5}$ for acetic acid, what is K_b for acetate ion? What is the pH of 0.010 M sodium acetate?

1. Calculate the approximate pH of a solution prepared to be 0.0010 M malonic acid (H₂C₃H₂O₄, $K_1 = 1.5 \times 10^{-3}, K_2 = 2.0 \times 10^{-6}$).

2. Calculate the concentration of all species in $0.10 \text{ M H}_3\text{PO}_4$.

 $K_1 = 7.5 \times 10^{-3}$ $K_2 = 6.2 \times 10^{-8}$ $K_3 = 4.8 \times 10^{-13}$

3. Calculate the pH of the solution prepared to be 0.015 M sodium malonate ($Na_2C_3H_2O_4$)

1. Calculate the pH of the solution which is prepared to be 0.10 M in nitrous acid and 0.15 M sodium nitrite.

2. What is the calculated pH of the buffer solution formed by dissolving 4.2 g of acetic acid and 9.0 g of sodium acetate in water and diluting to 500.0 mL?

3. A 10.0 mL quantity of 0.1 M HCl is mixed with 95 mL of 0.15 M sodium nitrite. What is the pH of the new solution?

4. What is the calculated pH of the solution formed by mixing 10.0 mL of 0.15 M NaOH with 85 mL of 0.10 M benzoic acid?

1. In 1 or 2 sentences, explain back-titration.

2. Name and give the formulas for any 2 different substances used in common antacids.

3. Write the reaction of HCl with one of the two substances listed in question 2. If you cannot answer question 2, write the reaction of HCl with barium hydroxide.

- 4. To a 0.100 g sample of an antacid was added 50.00 mL of 0.100 M HCl. The antacid tablet dissolved and CO₂ gas was produced. The solution was boiled and cooled to remove the last of the CO₂. Phenolphthalein was added to the solution and the excess HCl titrated with standard 0.100 M NaOH to the phenolphthalein endpoint. It required 3.00 mL of the NaOH.
 - a. What color is the phenolphthalein endpoint?
 - b. What is the number of moles of HCl neutralized per gram of antacid?
 - c. What is the percentage $CaCO_3$ in the antacid?

5. 25 mL of 0.1 M acetic acid is titrated with 0.1 M NaOH. Calculate the pH of the solution after the addition of the following amounts of base. What acid-base indicator would be best to indicate endpoint?

0 mL of NaOH

1 mL

 $5\,\mathrm{mL}$

15 mL

 $25 \ \text{mL}$

30 mL

For personal extra credit, calculate more points and plot the curve of pH vs Volume of base added. Then compare this curve to that obtained by titrating 25 mL of 0.1 M HCl with 0.1 M NaOH.