HANDOUT SET

GENERAL CHEMISTRY II

Periodic Table of the Elements

$\begin{gathered} 1 \\ \text { IA } \end{gathered}$	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	$\begin{gathered} 18 \\ \text { vIIIA } \end{gathered}$
1																	2
H																	He
1.00794	IIA											IIIA	IVA	VA	VIA	VIIA	4.00262
3	4											5	6	7	8	9	10
Li	Be											B	C	N	0	F	Ne
6.941	9.0122											10.811	12.011	14.0067	15.9994	18.9984	20.179
11	12											13	14	15	16	17	18
Na	Mg											Al	Si	P	S	Cl	Ar
22.9898	24.305	IIIB	IVB	VB	VIB	VIIB		VIIIB		IB	IIB	26.98154	28.0855	30.97376	32.066	35.453	39.948
19	20	21	22	${ }^{23}$	24	25	26	27	28	29	30	31	32	33	34	35	36
K	Ca	Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	$\mathbf{K r}$
39.0983	40.078	44.9559	47.88	50.9415	51.9961	54.9380	55.847	58.9332	58.69	63.546	65.39	69.723	72.59	74.9216	78.96	79.904	83.80
37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
Rb	Sr	Y	Zr	Nb	Mo	Tc	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Te	I	Xe
85.4678	87.62	88.9059	91.224	92.9064	95.94	(98)	101.07	102.9055	106.42	107.8682	112.41	114.82	118.710	121.75	127.60	126.9045	131.29
55	56	57	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86
Cs	Ba	La*	Hf	Ta	W	Re	Os	Ir	Pt	Au	$\mathbf{H g}$	Tl	$\mathbf{P b}$	Bi	Po	At	Rn
132.9054	137.34	138.91	178.49	180.9479	183.85	186.207	190.2	192.22	195.08	196.9665	200.59	204.383	207.2	208.9804	(209)	(210)	(222)
87	88	89	104	105	106	107	108	109	110	111	112						
Fr	Ra	Ac**	$\mathbf{R f}$	Db	Sg	Bh	Hs	Mt			***						
(223)	226.0254	227.0278	(261)	(262)	${ }_{(263)}$	(264)	(265)	(266)	(270)	(272)	(277)						

*Lanthanides	$\begin{aligned} & \hline 58 \\ & \mathrm{Ce} \end{aligned}$	${ }^{59}$	${ }^{60}$	${ }^{61}$	${ }^{62}$	${ }^{63}$	${ }^{64}$	${ }^{65}$	${ }^{66}$	67	68	${ }^{69}$	70	71
		Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Но	Er	Tm	Yb	$\mathbf{L u}$
	140.12	140.9077	144.24	(145)	150.36	151.96	157.25	158.925	162.50	164.930	167.26	168.9342	173.04	174.967

**Actinides	$\begin{gathered} 90 \\ \mathbf{T h} \end{gathered}$	$\begin{gathered} 91 \\ \mathbf{P a}_{\mathbf{a}} \end{gathered}$	92	93	94	95	${ }^{96}$	97	98	99	100	101	102	103
				Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr
	232.038	231.0659	238.0289	237.0482	(244)	(243)	(247)	(247)	(251)	(252)	(257)	(258)	(259)	(260)

Mass numbers in parenthesis are the mass numbers of the most stable isotopes. As of 1997 elements 110-112 have not been named.
***Peter Armbruster and Sigurd Hofman synthesized a single atom at the Heavy-Ion Research Center in Darmstadt, Germany in 1996. The atom survived for $280 \mu \mathrm{~s}$ after which it decayed to element 110 by loss of an α-particle

Chapter 14

Chemical Kinetics

CHEMICAL KINETICS
 CHAPTER 15

INTRODUCTION

A properly written chemical equation tells that a reaction may occur to yield certain products. The rate of the reaction or how fast the reaction proceeds is, however, only experimentally determined. The field of chemistry dedicated to the study of reaction rates and the mechanism by which products are formed is known as chemical kinetics and mechanisms. The focus of lecture for this chapter is on chemical kinetics.

GOALS

1. You should be able to describe the rate of reaction as a change in concentration per change in time for any species in the reaction.
2. You should be able to take graphical data and deduce average and instantaneous rates.
3. From experimental data, it is possible to derive the rate law and from the rate law calculate rates of reactions for experimental conditions.
4. Three reaction orders have been explicitly covered: zeroeth-, first-, and second-order. An understanding of the how a rate plot would look and how to analyze for each of these is important.
5. You should be comfortable with using the integrated rate law for 1 st- and 2 nd-order reactions and understand how to calculate and use half-life.

DEFINITIONS

You should have a working knowledge of at least these terms and any others used in lecture.
First-order reaction Overall reaction order Instantaneous rate
Second-order reaction
Zeroeth-order reaction
Rate law

Integrated rate law

Half-life
Rate constant

Average rate
Initial rate
Mechanism

Chemical Kinetics, Reaction Rates, and the Rate Law

1. Consider the following reaction

$$
\mathrm{CO}(\mathrm{~g})+\mathrm{NO}_{2}(\mathrm{~g}) \rightarrow \mathrm{CO}_{2}(\mathrm{~g})+\mathrm{NO}(\mathrm{~g})
$$

The kinetic data of initial reaction rate were collected for the initial concentration conditions. The rates are average initial rates, obtained graphically from the original kinetic data. Use the method of initial rates to determine the rate law and rate constant.

	$[\mathrm{CO}]_{0}$ (M)	$\left[\mathrm{NO}_{2}\right]_{0}$ (M)	Initial Rate $(\mathrm{M} / \mathrm{h})$
1	5.1×10^{-4}	0.35×10^{-4}	3.4×10^{-8}
2	5.1×10^{-4}	0.70×10^{-4}	6.8×10^{-8}
3	5.1×10^{-4}	0.18×10^{-4}	1.7×10^{-8}
4	1.0×10^{-3}	0.35×10^{-4}	6.8×10^{-8}
5	1.5×10^{-3}	0.35×10^{-4}	10.2×10^{-8}

2. A first-order reactions proceeds with a rate constant of $0.020 / \mathrm{s}$. If the initial concentration of the reactant is 0.012 M , what will be the concentration after 30 s ?
3. Referring to the previous question, what fraction of starting material remains after 15 s ?
4. What is the half-life of this reaction?
5. Radioactive isotopes decay obeying a first-order kinetic rate law. Tritium, a radioactive isotope of hydrogen, has a half-life of 12.3 y . It has a natural abundance of 10^{-18} percent (by mol). What mass of tritium (atomic weight 3.016 u) is present in 1000 kg of water? After 100 years, what mass of tritium will remain?

Temperature Dependence on the Rate Constant

1. Experiment

Determine the activation energy for the reaction

$$
\mathrm{S}_{2} \mathrm{O}_{8}{ }^{2-}+2 \mathrm{I}^{-} \rightarrow 2 \mathrm{SO}_{4}{ }^{2-}+\mathrm{I}_{2}
$$

The rate law for the reaction is

$$
\text { Rate }=\mathrm{k}\left[\mathrm{~S}_{2} \mathrm{O}_{8}{ }^{2-}\right][\mathrm{I}]
$$

Experimental Setup:

	Volumes of Reagents (mL)							
	Temp $\left({ }^{\circ} \mathrm{C}\right)$	0.20 M NaI	0.010 M $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$	2% Starch Indicator	Water	0.20 M $\mathrm{K}_{2} \mathrm{~S}_{2} \mathrm{O}_{8}$	Reaction Time (s)	
1								
2								
3								
4								
5								

For reasons we won't go into here:

$$
\text { Rate }=\frac{\Delta\left[\mathrm{S}_{2} \mathrm{O}_{8}^{2-}\right]}{t_{\mathrm{rxn}}}=\frac{1}{2} \frac{\Delta\left[\mathrm{~S}_{2} \mathrm{O}_{3}^{2-}\right]_{0}}{t_{\mathrm{rxn}}}
$$

	Rate (M/s)	Rate Constant
1		
2		
3		
4		
5		

2. The reaction to produce ethyl alcohol from ethyl iodide

$$
\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{I}+\mathrm{OH}^{-} \rightarrow \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}+\mathrm{I}^{-}
$$

was studied at several temperatures. The following rate constants for the reaction were determined:

Temperature $\left({ }^{\circ} \mathrm{C}\right)$	Rate Constant $\left(\mathrm{M}^{-1} \mathrm{~s}^{-1}\right)$
15.83	5.03×10^{-5}
32.02	3.68×10^{-4}
59.75	6.71×10^{-3}
90.61	0.119

Determine the activation energy of the reaction graphically and by using the Arrhenius equation.
3. The following reaction is possibly important in the catalytic hydrogenation of alkene hydrocarbons. Determine the activation energy for the reaction.

What is the rate constant for the reaction at $25^{\circ} \mathrm{C}$?

Data	
Temp $\left({ }^{\circ} \mathrm{C}\right)$	Rate Constant $\left(\mathrm{s}^{-1}\right)$
-60.0	1.3×10^{-3}
-70.0	2.4×10^{-4}
-80.0	5.8×10^{-5}

Chemical Kinetics: Additional Problems

1. In the reaction

$$
\mathrm{CH}_{3} \mathrm{Br}(\mathrm{aq})+\mathrm{OH}^{-}(\mathrm{aq}) \rightarrow \mathrm{CH}_{3} \mathrm{OH}(\mathrm{aq})+\mathrm{Br}^{-}(\mathrm{aq})
$$

when the OH^{-}concentration alone was doubled, the rate doubled; when the $\mathrm{CH}_{3} \mathrm{Br}$ concentration alone was increased by a factor of 1.2 , the rate increased by a factor of 1.2 . Write the rate law for the reaction.
2. In the reaction

$$
2 \mathrm{NO}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{NO}_{2}(\mathrm{~g})
$$

when the NO concentration alone was doubled, the rate increased by a factor of 4 ; when both the NO and the O_{2} concentrations were increased by a factor of 2 , the rate increased by a factor of 8 . What is the rate law for the reaction?
3. The following kinetic data were obtained for the reaction

$$
2 \mathrm{ICl}(\mathrm{~g})+\mathrm{H}_{2}(\mathrm{~g}) \rightarrow \mathrm{I}_{2}(\mathrm{~g})+2 \mathrm{HCl}(\mathrm{~g})
$$

Initial
Concentration
($\mathrm{mmol} \mathrm{L}^{-1}$)

Experiment	$[\mathrm{ICl}]_{\mathrm{o}}$	$\left[\mathrm{H}_{2}\right]_{\mathrm{o}}$	Initial Rate $\left(\mathrm{mmol} \cdot \mathrm{L}^{-1} \mathrm{~s}^{-1}\right)$
1	1.5	1.5	3.7×10^{-7}
2	3.0	1.5	7.4×10^{-7}
3	3.0	4.5	2.2×10^{-6}
4	4.7	2.7	$?$

(a) Write the rate law for the reaction.
(b) From the data, determine the value of the rate constant.
(c) Use the data to predict the reaction rate for Experiment 4.
4. The following kinetic data were obtained for the reaction

$$
\mathrm{A}(\mathrm{~g})+2 \mathrm{~B}(\mathrm{~g}) \rightarrow \text { product. }
$$

Initial
Concentration
($\mathrm{mmol} \cdot \mathrm{L}^{-1}$)

Experiment	$[\mathrm{A}]_{\mathrm{o}}$	$[\mathrm{B}]_{\mathrm{o}}$	Initial Rate $\left(\mathrm{mmol} \cdot \mathrm{L}^{-1} \mathrm{~s}^{-1}\right)$
1	0.60	0.30	1.6
2	0.20	0.30	1.4
3	0.60	0.10	4.2
4	0.17	0.25	$?$

(a) What is the order with respect to each reactant and the overall order of the reaction?
(b) Write the rate law for the reaction.
(c) From the data, determine the value of the rate constant.
(d) Use the data to predict the reaction rate for Experiment 4.
5. The following data were obtained for the reaction

	$\mathrm{A}+\mathrm{B}+\mathrm{C} \rightarrow$ products: Initial Concentration $\left(\mathrm{mmol} \mathrm{L}^{-1}\right)$ Experiment	$[\mathrm{A}]_{0}$		
1	1.25	$1 \mathrm{~B}]_{0}$	$[\mathrm{C}]_{0}$	Initial Rate $\left((\mathrm{mmol} \mathrm{A}) \cdot \mathrm{L}^{-1} \mathrm{~s}^{-1}\right)$
2	2.50	1.25	1.25	8.7
3	1.25	3.02	1.25	17.4
4	1.25	3.02	3.75	50.8
5	3.01	1.00	1.15	457

(a) Write the rate law for the reaction.
(b) What is the order of the reaction?
(c) Determine the value of the rate constant.
(d) Use the data to predict the reaction rate for Experiment 5.

6 Determine the rate constant for each of the following first- order reactions, in each case expressed for the rate of loss of A :
(a) $A \rightarrow B$, given that the concentration of A decreases to one-half its initial value in 1000 s
(b) $\mathrm{A} \rightarrow \mathrm{B}$, given that the concentration of A decreases from $0.67 \mathrm{~mol}^{-1}$ to $0.53 \mathrm{~mol}^{-1}$ in 25 s
(c) $2 \mathrm{~A} \rightarrow \mathrm{~B}+\mathrm{C}$, given that $[\mathrm{A}]_{\mathrm{o}}=0.153 \mathrm{~mol} \mathrm{~L}^{-1}$ and that after 115 s the concentration of B rises to $0.034 \mathrm{~mol} \mathrm{~L}^{-1}$.
7. Determine the rate constant for each of the following first- order reactions:
(a) $2 \mathrm{~A} \rightarrow \mathrm{~B}+\mathrm{C}$, given that the concentration of A decreases to one-fourth its initial value in 38 min
(b) $2 \mathrm{~A} \rightarrow \mathrm{~B}+\mathrm{C}$, given that $[\mathrm{A}]_{\mathrm{o}}=0.039 \mathrm{~mol} \mathrm{~L}^{-1}$ and that after 75 s the concentration of B increases to $0.0095 \mathrm{~mol} \mathrm{~L}^{-1}$
(c) $2 \mathrm{~A} \rightarrow 3 \mathrm{~B}+\mathrm{C}$, given that $[\mathrm{A}]_{\mathrm{o}}=0.040 \mathrm{molL}$ and that after 8.8 min the concentration of B rises to $0.030 \mathrm{~mol} \mathrm{~L}^{-1}$.
In each case, write the rate law for the rate of loss of A.
8. Dinitrogen pentoxide, $\mathrm{N}_{2} \mathrm{O}_{5}$, decomposes by first-order kinetics with a rate constant of $3.7 \times 10^{-5} \mathrm{~s}^{-1}$ at 298 K.
(a) What is the half-life (in hours) for the decomposition of $\mathrm{N}_{2} \mathrm{O}_{5}$ at 298 K ?
(b) If $\left[\mathrm{N}_{2} \mathrm{O}_{5}\right]_{0}=0.0567 \mathrm{~mol} \mathrm{~L}^{-1}$, what will be the concentration of $\mathrm{N}_{2} \mathrm{O}_{5}$ after 3.5 h ?
(c) How much time (in minutes) will elapse before the $\mathrm{N}_{2} \mathrm{O}_{5}$ concentration decreases from 0.0567 $\mathrm{mol} \mathrm{L}^{-1}$ to $0.0135 \mathrm{~mol} \mathrm{~L}^{-1}$?
9. The half-life for the first-order decomposition of A is 355 s . How much time must elapse for the concentration of A to decrease to (a) one-fourth; (b) 15% of its original value; (c) one-ninth of its initial concentration?

