HANDOUT SET

GENERAL CHEMISTRY II

Periodic Table of the Elements

3 4 2 3 4 Li Be 6.941 9.0122 3 11 12 3 Mg 22.9898 24.305 IIIB IVB VB VIIB VIIIB IB IIB 26.98154 28.0855 30.97376 32.066 35 4 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 4 K Ca Sc Ti V Cr Mn Fe Co Ni Cu Zn Ga Ge As Se I 30.0983 40.078 44.9559 47.88 50.9415 51.9961 54.9380 55.847 58.9332 58.69 63.546 65.39 69.723 72.59 74.9216 78.96 79 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 <	VIIIA 2 He 4.00262 9 10 F Ne 9984 20.179 17 18 Cl Ar 453 39.948 35 36 Br Kr 904 83.80 53 54
Image: Na begin b	He 4.00262 9 10 F Ne 9984 20.179 17 18 Cl Ar .453 39.948 35 36 Br Kr .904 83.80
1.00794 IIA IIA IIA IIA IIA IIA IIA IIA VA VIA VA 2 Li Be 6.941 9.0122 5 6 7 8 1 12.011 14.0067 15.9994 18. 3 11 12 11 12 13 14 15 16 16 3 Na Mg Na Mg VB VIB VIIB IB IB IB 26.98154 28.0855 30.97376 32.066 35 4 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 4 K Ca Sc Ti V Cr Mn Fe Co Ni Cu Zn Ga Ge As Se Ja	IIA 4.00262 9 10 F Ne 9984 20.179 17 18 Cl Ar .453 39.948 35 36 Br Kr .904 83.80
3 4 5 6 7 8 2 Li Be 9.0122 5 6 7 8 00 3 11 12 11 12 13 14 15 16 7 3 Na Mg 22.9898 24.305 IIIB IVB VB VIB VIIIB IB IIB 26.98154 28.0855 30.97376 32.066 35 4 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 4 K Ca Sc Ti V Cr Mn Fe Co Ni Cu Zn Ga Ge As Se J 4 K Ca Sc Ti V Cr Mn Fe Co Ni Cu Zn Ga Ge As Se J 4 So So Si Si Si Si Si Si	Image 10 9 10 F Ne 9984 20.179 17 18 Cl Ar .453 39.948 35 36 Sr Kr .904 83.80
2 Li Be C N O 15.9994 18. 3 11 12 11 12 13 14 15 16 15.9994 18. 3 Na Mg 22.9898 24.305 IIIB IVB VIB VIIB VIIB IB IB IB 26.98154 28.0855 30.97376 32.066 35 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 4 4 K Ca Sc Ti V Cr Mn Fe Co Ni Cu Zn Ga Ge As Se F 39.0983 40.078 44.9559 47.88 50.9415 51.9961 54.9380 55.847 58.9332 58.69 63.546 65.39 69.723 72.59 74.9216 78.96 79 37 38 39 40 41 42 43 44 45 46 47	F Ne 9984 20.179 17 18 C1 Ar .453 39.948 35 36 Br Kr .904 83.80
6.941 9.0122 10.811 12.011 14.0067 15.9994 18. 3 Na Mg 22.9898 24.305 IIIB IVB VB VIB VIIB IB IB IB 26.98154 28.0855 30.97376 32.066 35 4 Mg 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 4 K Ca Sc Ti V Cr Mn Fe Co Ni Cu Zn Ga Ge As Se Je 30.0983 40.078 44.9559 47.88 50.9415 51.9961 54.9380 55.847 58.9332 58.69 63.546 65.39 69.723 72.59 74.9216 78.96 79 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52	9984 20.179 17 18 Cl Ar .453 39.948 35 36 Br Kr .904 83.80
11 12 Mg Mg Mg 11 12 13 14 15 16 Al Si P S	17 18 Cl Ar .453 39.948 35 36 Br Kr .904 83.80
³ Na Mg Mg IIIB IVB VB VIB VIIB IB IB IB Al Si P S 30.97376 32.066 35 4 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 4 K Ca Sc Ti V Cr Mn Fe Co Ni Cu Zn Ga Ge As Si 32.066 35 39.0983 40.078 44.9559 47.88 50.9415 51.9961 54.9380 55.847 58.9332 58.69 63.546 65.39 69.723 72.59 74.9216 78.96 79 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 51 51	Cl Ar .453 39.948 35 36 Br Kr .904 83.80
22.9898 24.305 IIIB IVB VB VIB VIIB VIIIB IB IIB 26.98154 28.0855 30.97376 32.066 35 4 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 34 4 K Ca Sc Ti V Cr Mn Fe Co Ni Cu Zn Ga Ge As Se J /</td <td>.453 39.948 35 36 Br Kr .904 83.80</td>	.453 39.948 35 36 Br Kr .904 83.80
19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 4 K Ca Sc Ti V Cr Mn Fe Co Ni Cu Zn Ga Ge As Se 1 39.0983 40.078 44.9559 47.88 50.9415 51.9961 54.9380 55.847 58.9332 58.69 63.546 65.39 69.723 72.59 74.9216 78.96 79 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52	35 36 Br Kr .904 83.80
4 K Ca Sc Ti V Cr Mn Fe Co Ni Cu Zn Ga Ge As Se I 39.0983 40.078 44.9559 47.88 50.9415 51.9961 54.9380 55.847 58.9332 58.69 63.546 65.39 69.723 72.59 74.9216 78.96 79 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52	Br Kr .904 83.80
39.0983 40.078 44.9559 47.88 50.9415 51.9961 54.9380 55.847 58.9332 58.69 63.546 65.39 69.723 72.59 74.9216 78.96 79.9216 78.96 79.9216 78.96 79.9216 78.96 79.9216 78.96 79.9216 79.9216 75.92 74.9216 75.92 75.92 74.9216 75.92	.904 83.80
37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52	
ND SI I ZI ND WO IC NU NI FU Ag CU III SI SD IC	I Xe
	1 AC .9045 131.29
	85 86
	At Rn
	XU XII 210) (222)
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	10) (222)
7 Fr Ra Ac** Rf Db Sg Bh Hs Mt ***	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
*Lanthanides 58 59 60 61 62 63 64 65 66 67 68 69 70 71	
Ce Pr Nd Pm Sm Eu Gd Tb Dy Ho Er Tm Yb L	
140.12 140.9077 144.24 (145) 150.36 151.96 157.25 158.925 162.50 164.930 167.26 168.9342 173.04 174.94	
**Actinides 90 91 92 93 94 95 96 97 98 99 100 101 102 10	3
Th Pa U Np Pu Am Cm Bk Cf Es Fm Md No L	
232.038 231.0659 238.0289 237.0482 (244) (243) (247) (247) (251) (252) (257) (258) (259) (269)	

Mass numbers in parenthesis are the mass numbers of the most stable isotopes. As of 1997 elements 110-112 have not been named.

***Peter Armbruster and Sigurd Hofman synthesized a single atom at the Heavy-Ion Research Center in Darmstadt, Germany in 1996. The atom survived for 280 μ s after which it decayed to element 110 by loss of an α -particle

Chapter 14

Chemical Kinetics

CHEMICAL KINETICS CHAPTER 15

INTRODUCTION

A properly written chemical equation tells that a reaction may occur to yield certain products. The rate of the reaction or how fast the reaction proceeds is, however, only experimentally determined. The field of chemistry dedicated to the study of reaction rates and the mechanism by which products are formed is known as chemical kinetics and mechanisms. The focus of lecture for this chapter is on chemical kinetics.

GOALS

- 1. You should be able to describe the rate of reaction as a change in concentration per change in time for any species in the reaction.
- 2. You should be able to take graphical data and deduce average and instantaneous rates.
- 3. From experimental data, it is possible to derive the rate law and from the rate law calculate rates of reactions for experimental conditions.
- 4. Three reaction orders have been explicitly covered: zeroeth-, first-, and second-order. An understanding of the how a rate plot would look and how to analyze for each of these is important.
- 5. You should be comfortable with using the integrated rate law for 1st- and 2nd-order reactions and understand how to calculate and use half-life.

DEFINITIONS

You should have a working knowledge of at least these terms and any others used in lecture.

First-order reaction Second-order reaction Zeroeth-order reaction Rate law Overall reaction order Integrated rate law Half-life Rate constant Instantaneous rate Average rate Initial rate Mechanism 1. Consider the following reaction

$$CO(g) + NO_2(g) \rightarrow CO_2(g) + NO(g)$$

The kinetic data of initial reaction rate were collected for the initial concentration conditions. The rates are average initial rates, obtained graphically from the original kinetic data. Use the method of initial rates to determine the rate law and rate constant.

	[CO] ₀	$[NO_2]_0$	Initial Rate
	(M)	(M)	(M/h)
1	5.1×10^{-4}	0.35×10^{-4}	3.4×10^{-8}
2	5.1×10^{-4}	$0.70 imes10^{-4}$	6.8×10^{-8}
3	5.1×10^{-4}	$0.18 imes 10^{-4}$	1.7×10^{-8}
4	1.0×10^{-3}	0.35×10^{-4}	6.8×10^{-8}
5	1.5×10^{-3}	0.35×10^{-4}	10.2×10^{-8}

2. A first-order reactions proceeds with a rate constant of 0.020/s. If the initial concentration of the reactant is 0.012 M, what will be the concentration after 30 s?

3. Referring to the previous question, what fraction of starting material remains after 15 s?

4. What is the half-life of this reaction?

5. Radioactive isotopes decay obeying a first-order kinetic rate law. Tritium, a radioactive isotope of hydrogen, has a half-life of 12.3 y. It has a natural abundance of 10⁻¹⁸ percent (by mol). What mass of tritium (atomic weight 3.016 u) is present in 1000 kg of water? After 100 years, what mass of tritium will remain?

1. Experiment

Determine the activation energy for the reaction

$$S_2O_8^{2-}$$
 + 2 $I^- \rightarrow 2 SO_4^{2-}$ + I_2

The rate law for the reaction is

Rate =
$$k[S_2O_8^{2^-}][I^-]$$

Experimental Setup:

		Volumes of Reagents (mL)					
	Temp (°C)	0.20 M NaI	0.010 M Na ₂ S ₂ O ₃	2% Starch Indicator	Water	$0.20 \text{ M} \\ K_2S_2O_8$	Reaction Time (s)
1							
2							
3							
4							
5							

For reasons we won't go into here:

Rate =
$$\frac{\Delta[S_2O_8^{2^-}]}{t_{rxn}} = \frac{1}{2} \frac{\Delta[S_2O_3^{2^-}]_0}{t_{rxn}}$$

	Rate (M/s)	Rate Constant
1		
2		
3		
4		
5		

2. The reaction to produce ethyl alcohol from ethyl iodide

$$C_2H_5I + OH^- \rightarrow C_2H_5OH + I^-$$

was studied at several temperatures. The following rate constants for the reaction were determined:

Temperature	Rate Constant
(°C)	$(M^{-1}s^{-1})$
15.83	5.03×10^{-5}
32.02	3.68×10^{-4}
59.75	6.71×10^{-3}
90.61	0.119

Determine the activation energy of the reaction graphically and by using the Arrhenius equation.

3. The following reaction is possibly important in the catalytic hydrogenation of alkene hydrocarbons. Determine the activation energy for the reaction.

What is the rate constant for the reaction at 25°C?

Data	
Temp	Rate Constant
(°C)	(s^{-1})
-60.0	1.3×10^{-3}
-70.0	2.4×10^{-4}
-80.0	5.8×10^{-5}

1. In the reaction

 $CH_3Br(aq) + OH^-(aq) \rightarrow CH_3OH(aq) + Br^-(aq)$

when the OH^{-} concentration alone was doubled, the rate doubled; when the CH_3Br concentration alone was increased by a factor of 1.2, the rate increased by a factor of 1.2. Write the rate law for the reaction.

2. In the reaction

$$2 \operatorname{NO}(g) + \operatorname{O}_2(g) \rightarrow 2 \operatorname{NO}_2(g)$$

when the NO concentration alone was doubled, the rate increased by a factor of 4; when both the NO and the O_2 concentrations were increased by a factor of 2, the rate increased by a factor of 8. What is the rate law for the reaction?

3. The following kinetic data were obtained for the reaction

$$\begin{array}{c|c} & \text{Initial} \\ \text{Concentration} \\ (\text{mmol } \text{L}^{-1}) \\ \hline \\ \hline \\ \text{Experiment} & [\text{ICI}]_{\text{o}} & [\text{H}_2]_{\text{o}} & (\text{mmol} \cdot \text{L}^{-1}\text{s}^{-1}) \\ \hline \\ 1 & 1.5 & 1.5 & 3.7 \times 10^{-7} \\ 2 & 3.0 & 1.5 & 7.4 \times 10^{-7} \\ 3 & 3.0 & 4.5 & 2.2 \times 10^{-6} \\ 4 & 4.7 & 2.7 & ? \end{array}$$

 $2 \operatorname{ICl}(g) + \operatorname{H}_2(g) \rightarrow \operatorname{I}_2(g) + 2 \operatorname{HCl}(g).$

(a) Write the rate law for the reaction.

(b) From the data, determine the value of the rate constant.

(c) Use the data to predict the reaction rate for Experiment 4.

4. The following kinetic data were obtained for the reaction

 $A(g) + 2 B(g) \rightarrow product.$

	Ini	tial	
		ntration	
_	(mmo	$\mathrm{pl}\cdot\mathrm{L}^{-1}$)	_
			Initial Rate
Experiment	$[A]_{o}$	[B] _o	$(\text{mmol}\cdot\text{L}^{-1}\text{s}^{-1})$
1	0.60	0.30	1.6
2	0.20	0.30	1.4
3	0.60	0.10	4.2
4	0.17	0.25	?

(a) What is the order with respect to each reactant and the overall order of the reaction?

- (b) Write the rate law for the reaction.
- (c) From the data, determine the value of the rate constant.
- (d) Use the data to predict the reaction rate for Experiment 4.
- 5. The following data were obtained for the reaction

A + B + C	$\mathbb{C} \rightarrow \text{products}$:
-----------	--	---

	Initial Concentration $(\text{mmol } L^{-1})$			
Enneringent		·	·	Initial Rate
Experiment	$[A]_{o}$	$[B]_{o}$	$[C]_{o}$	$((\text{mmol A}) \cdot L^{-1} s^{-1})$
1	1.25	1.25	1.25	8.7
2	2.50	1.25	1.25	17.4
3	1.25	3.02	1.25	50.8
4	1.25	3.02	3.75	457
5	3.01	1.00	1.15	?

(a) Write the rate law for the reaction.

- (b) What is the order of the reaction?
- (c) Determine the value of the rate constant.
- (d) Use the data to predict the reaction rate for Experiment 5.
- 6 Determine the rate constant for each of the following first- order reactions, in each case expressed for the rate of loss of A:
 - (a) $A \rightarrow B$, given that the concentration of A decreases to one-half its initial value in 1000 s
 - (b) A \rightarrow B, given that the concentration of A decreases from 0.67 mol L⁻¹ to 0.53 mol L⁻¹ in 25 s
 - (c) 2 A \rightarrow B + C, given that [A]_o = 0.153 mol L⁻¹ and that after 115 s the concentration of B rises to 0.034 mol L⁻¹.
- 7. Determine the rate constant for each of the following first- order reactions:

(a) $2 A \rightarrow B + C$, given that the concentration of A decreases to one-fourth its initial value in 38 min (b) $2 A \rightarrow B + C$, given that $[A]_0 = 0.039 \text{ mol } L^{-1}$ and that after 75 s the concentration of B increases to 0.0095 mol L^{-1}

(c) 2 A \rightarrow 3 B + C, given that [A]_o = 0.040 molL and that after 8.8 min the concentration of B rises to 0.030 mol L⁻¹.

In each case, write the rate law for the rate of loss of A.

- 8. Dinitrogen pentoxide, N_2O_5 , decomposes by first-order kinetics with a rate constant of 3.7×10^{-5} s⁻¹ at 298 K.
 - (a) What is the half-life (in hours) for the decomposition of N_2O_5 at 298 K?
 - (b) If $[N_2O_5]_0 = 0.0567 \text{ mol } L^{-1}$, what will be the concentration of N_2O_5 after 3.5 h?
 - (c) How much time (in minutes) will elapse before the N_2O_5 concentration decreases from 0.0567 mol L⁻¹ to 0.0135 mol L⁻¹?

9. The half-life for the first-order decomposition of A is 355 s. How much time must elapse for the concentration of A to decrease to (a) one-fourth; (b) 15% of its original value; (c) one-ninth of its initial concentration?