HANDOUT SET

GENERAL CHEMISTRY II

Periodic Table of the Elements

$\begin{gathered} 1 \\ \text { IA } \end{gathered}$	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	$\begin{gathered} 18 \\ \text { vIIIA } \end{gathered}$
1																	2
H																	He
1.00794	IIA											IIIA	IVA	VA	VIA	VIIA	4.00262
3	4											5	6	7	8	9	10
Li	Be											B	C	N	0	F	Ne
6.941	9.0122											10.811	12.011	14.0067	15.9994	18.9984	20.179
11	12											13	14	15	16	17	18
Na	Mg											Al	Si	P	S	Cl	Ar
22.9898	24.305	IIIB	IVB	VB	VIB	VIIB		VIIIB		IB	IIB	26.98154	28.0855	30.97376	32.066	35.453	39.948
19	20	21	22	${ }^{23}$	24	25	26	27	28	29	30	31	32	33	34	35	36
K	Ca	Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	$\mathbf{K r}$
39.0983	40.078	44.9559	47.88	50.9415	51.9961	54.9380	55.847	58.9332	58.69	63.546	65.39	69.723	72.59	74.9216	78.96	79.904	83.80
37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
Rb	Sr	Y	Zr	Nb	Mo	Tc	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Te	I	Xe
85.4678	87.62	88.9059	91.224	92.9064	95.94	(98)	101.07	102.9055	106.42	107.8682	112.41	114.82	118.710	121.75	127.60	126.9045	131.29
55	56	57	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86
Cs	Ba	La*	Hf	Ta	W	Re	Os	Ir	Pt	Au	$\mathbf{H g}$	Tl	$\mathbf{P b}$	Bi	Po	At	Rn
132.9054	137.34	138.91	178.49	180.9479	183.85	186.207	190.2	192.22	195.08	196.9665	200.59	204.383	207.2	208.9804	(209)	(210)	(222)
87	88	89	104	105	106	107	108	109	110	111	112						
Fr	Ra	Ac**	$\mathbf{R f}$	Db	Sg	Bh	Hs	Mt			***						
(223)	226.0254	227.0278	(261)	(262)	${ }_{(263)}$	(264)	(265)	(266)	(270)	(272)	(277)						

*Lanthanides	$\begin{aligned} & \hline 58 \\ & \mathrm{Ce} \end{aligned}$	${ }^{59}$	${ }^{60}$	${ }^{61}$	${ }^{62}$	${ }^{63}$	${ }^{64}$	${ }^{65}$	${ }^{66}$	67	68	${ }^{69}$	70	71
		Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Но	Er	Tm	Yb	$\mathbf{L u}$
	140.12	140.9077	144.24	(145)	150.36	151.96	157.25	158.925	162.50	164.930	167.26	168.9342	173.04	174.967

**Actinides	$\begin{gathered} 90 \\ \mathbf{T h} \end{gathered}$	$\begin{gathered} 91 \\ \mathbf{P a}_{\mathbf{a}} \end{gathered}$	92	93	94	95	${ }^{96}$	97	98	99	100	101	102	103
				Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr
	232.038	231.0659	238.0289	237.0482	(244)	(243)	(247)	(247)	(251)	(252)	(257)	(258)	(259)	(260)

Mass numbers in parenthesis are the mass numbers of the most stable isotopes. As of 1997 elements 110-112 have not been named.
***Peter Armbruster and Sigurd Hofman synthesized a single atom at the Heavy-Ion Research Center in Darmstadt, Germany in 1996. The atom survived for $280 \mu \mathrm{~s}$ after which it decayed to element 110 by loss of an α-particle

Chapter 12, 13

Intermolecular Forces: Liquids and Solids and Solutions

Hydrogen Bonding in the Double-Helix

Copytget: O Pownco Efucation, inc, pubtshing as fieripmin Cummings.

Dipole Moments of Selected Molecules. Unspecified temperatures are assumed to be $25^{\circ} \mathrm{C}$

Compound	Dipole Moment (D)	
Cyclohexane	0	$\left(20^{\circ} \mathrm{C}\right)$
Cyclopentane	0	
Heptane	0	
Iso-octane	0	$\left(20^{\circ} \mathrm{C}\right)$
Pentane	0	
Hexane	0.08	
Toluene	0.31	$\left(20^{\circ} \mathrm{C}\right)$
1,4-Dioxane	0.45	
o-Xylene	0.45	
Dichloromethane	1.14	
Chloroform	1.15	
Ethyl Ether	1.15	$\left(20^{\circ} \mathrm{C}\right)$
2-Chlorophenol	1.24	
Methyl t-Butyl Ether	1.32	
o-cresol	1.35	
Phenol	1.49	
Chlorobenzene	1.56	
Bromobenzene	1.56	
p-cresol	1.58	
m-cresol	1.61	
Ethyl Alcohol	1.66	$\left(20^{\circ} \mathrm{C}\right)$
2-Propanol	1.66	$\left(30^{\circ} \mathrm{C}\right)$
Glyme	1.71	
1-Butanol	1.75	
Tetrahydrofuran	1.75	
Isobutyl Alcohol	1.79	
Ethylene Dichloride	1.83	
n-Butyl Acetate	1.84	$\left(22^{\circ} \mathrm{C}\right)$
Water	1.87	$\left(20^{\circ} \mathrm{C}\right)$
Ethyl Acetate	1.88	
1,3-Dioxane	1.90	
1-Chlorobutane	1.90	
2-Methoxyethanol	2.04	
3-Chlorophenol	2.08	
o-Dichlorobenzene	2.14	$\left(20^{\circ} \mathrm{C}\right)$
4-Chlorophenol	2.24	
Pyridine	2.37	
Acetone	2.69	$\left(20^{\circ} \mathrm{C}\right)$
Methyl n-Propyl Ketone	2.70	$\left(20^{\circ} \mathrm{C}\right)$
Methyl Ethyl Ketone	2.76	
Methanol	2.87	$\left(20^{\circ} \mathrm{C}\right)$
1-Propanol	3.09	($20^{\circ} \mathrm{C}$)
2-Nitrophenol	3.12	
Acetonitrile	3.44	$\left(20^{\circ} \mathrm{C}\right)$
Dimethyl Acetamide	3.72	
3-Nitrophenol	3.76	
N, N-Dimethylformamide	3.86	
N-Methylpyrrolidone	4.09	$\left(30^{\circ} \mathrm{C}\right)$
Dimethyl Sulfoxide	4.1	
4-Nitrophenol	4.72	
Propylene Carbonate	4.94	$\left(20^{\circ} \mathrm{C}\right)$

Intermolecular Forces

1. From Lange's Handbook of Chemistry, $13^{\text {th }}$ Ed. (McGraw Hill), we find $\Delta H_{\text {vap }}$ for $\mathrm{H}_{2} \mathrm{O}$ to be 40.7 $\mathrm{kJ} / \mathrm{mol}$. We also know the vapor pressure of water at $100^{\circ} \mathrm{C}$. Calculate the vapor pressure of water at $25.0^{\circ} \mathrm{C}$ in a closed container.
2. The vapor pressure and associated temperatures for ethanol were found in the CRC Handbook of Chemistry and Physics. Determine $\Delta H_{\text {vap }}$ for ethanol from these data. Is it different from water? Why?

v.p. $(\mathbf{m m ~ H g})$	Temp $\left({ }^{\circ} \mathbf{C}\right)$
40.0	19.0
400.0	63.5
760.0	78.4

3. The vapor pressures measured at several temperatures for benzene are shown in the table. Calculate the normal boiling point (1 atm) for benzene. (The literature value is $80.1^{\circ} \mathrm{C}$)

Temp $\left({ }^{\circ} \mathbf{C}\right)$	$\mathbf{v . p .}$ $(\mathbf{k P a})$
0.0	4.11
10.0	6.77
20.0	10.78
40.0	25.00

4. How much energy is needed to melt an ice cube (at constant temperature) that has a mass of 28.0 g ? $\left(\Delta H_{\text {fusion }}=6.02 \mathrm{~kJ} \mathrm{~mol}^{-1}\right)$
5. How much energy is required to convert 28.0 g of ice at $-12.0^{\circ} \mathrm{C}$ to steam at $100^{\circ} \mathrm{C}$ in a closed vessel? (Hint: What information not listed will be needed?)

Solutions I: Saturated and Unsaturated Solutions

1. The concentration of dissolved oxygen from the air at 1.0 atm in sea water is $3.1 \times 10^{-4} \mathrm{M}$ at $25^{\circ} \mathrm{C}$. Predict the concentration of dissolved oxygen in sea water at a partial pressure O_{2} of 1.0 atm (i.e., pure oxygen).
2. A solution of KNO 3 is prepared carefully to be 28.0 g of solid dissolved in 200.0 g of water, then slowly cooled to $0.0^{\circ} \mathrm{C}$. No crystallization occurs. Is the solution unsaturated, saturated, or supersaturated? $\left(s_{\mathrm{KNO}_{3}}^{\mathrm{o}^{\circ} \mathrm{C}}=13.3 \mathrm{~g} / 100 \mathrm{~g} \mathrm{H}_{2} \mathrm{O}\right)$
3. When a seed crystal is added, some solid precipitates from the solution prepared in question 2. Predict the quantity of solid that precipitates.
4. What is the molal concentration of the solution prepared by dissolving 60.0 g of glucose $\left(\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}\right.$, $180.2 \mathrm{~g} / \mathrm{mol}$) in 100.0 mL of water?
5. What quantity of methanol $\left(\mathrm{CH}_{3} \mathrm{OH}\right)$ must be added to 250.0 g of water to make a 0.25 m solution?

Solutions II: Colligative Properties

 100.0 g of water?
2. What is the predicted freezing point of the solution from (1)?
3. How many gallons of antifreeze (ethylene glycol) must be added to 4.0 gallons of water to lower the freezing point of the solution to $-10.0^{\circ} \mathrm{F}$ (a fairly bad winter day on the east coast)? (Hint: You will probably need to use the CRC Handbook of Chemistry and Physics, Merck Index, or other resource to get some of the information you need.)
4. A solution of the male hormone, testosterone, containing 0.363 g of the hormone in 5.00 g of benzene has a freezing point of $4.27^{\circ} \mathrm{C}$. What is the molar mass of testosterone? The freezing point of pure benzene is $5.50^{\circ} \mathrm{C}$. Additional data: A solution of 1.13 g of naphthalene $\left(\mathrm{C}_{10} \mathrm{H}_{8}\right)$ in 10.00 g of benzene had a freezing point of $0.99^{\circ} \mathrm{C}$.)
5. Testosterone contains only carbon, hydrogen, and oxygen. The percentage composition of the molecule is $79.12 \% \mathrm{C}$ and $9.79 \% \mathrm{H}$. What is the molecular formula and accurate molar mass?

Colligative Properties: Freezing Point Depression, Vapor Pressure Lowering,Boiling Point Elevation Additional Problems

1. Adding a nonvolatile ionic solute to water has what effect on the boiling point of the solvent?
... \square Does not affect the b.p.
... \square Lower the b.p.
$\ldots \square$ Raises the b.p.
$\ldots \square$ Cannot tell without more information, such as concentration
2. What is the van't Hoff factor?
3. What is a colligative property (a definition; not "it's freezing point depression", etc.)
4. Give an example of a colligative property other than freezing point depression.
5. What is the equation that relates the freezing point depression and concentration? Define each variable.
6. Calculate the molal concentration of a sucrose $\left(\mathrm{C}_{12} \mathrm{H}_{22} \mathrm{O}_{11}\right)$ solution that is prepared by dissolving 10.0 g of the solid in 150.0 g of water.
7. What is the freezing point of the solution prepared in question 6? The molal freezing point depression constant for water is $1.86^{\circ} \mathrm{C} / \mathrm{m}$.
8. A certain pheromone from the gypsy moth has a percentage composition of $79.12 \% \mathrm{C}, 9.79 \% \mathrm{H}$ and $11.09 \% \mathrm{O}$. A solution containing 0.363 g of the compound in 5.00 g of benzene freezes at $4.27^{\circ} \mathrm{C}$. What is the molar mass of the pheromone and what is its molecular formula? $K_{\mathrm{f}, \text { benzene }}=5.12^{\circ} \mathrm{C} / \mathrm{m}$.
9. Assuming complete dissociation of the solid, what is the predicted melting point of a 1.5 m solution of sodium chloride?
10. Draw a typical cooling curve for a pure solvent. Draw the cooling curve for a $1-\mathrm{m}$ solution of the same solvent which has a molal freezing point depression constant of $2.0^{\circ} \mathrm{C} / \mathrm{m}$. Identify each region of the curve.
11. The vapor pressure of water at $25.0^{\circ} \mathrm{C}$ is 23.8 torr. What is the vapor pressure of a solution of 10.0 g of glucose $\left(\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}, 180.2 \mathrm{~g} \mathrm{~mol}^{-1}\right)$ dissolved in 100.0 g of water?
12. Assume no deviation from ideal behavior, what is the vapor pressure at $25^{\circ} \mathrm{C}$ of the solution prepared by mixing 50.0 mL of benzene with 50.0 mL of hexane? Some important information is given in the table. Not all information may be necessary.

Property	Hexane	Benzene
Formula	$\mathrm{C}_{6} \mathrm{H}_{14}$	$\mathrm{C}_{6} \mathrm{H}_{6}$
Vapor Pressure at $25^{\circ} \mathrm{C}(\mathrm{mm} \mathrm{Hg})$	151.6	95.1
Density $(\mathrm{g} / \mathrm{mL})$	0.659	0.874
Normal boiling point $\left({ }^{\circ} \mathrm{C}\right)$	68.7	80.1

An Application of the van't Hoff Factor in Acid/Base Equilibrium

The freezing point of 0.10 m acetic acid is $-0.19^{\circ} \mathrm{C}$. What is the van't Hoff factor for acetic acid at this concentration and what fraction (in percentage) of the acetic acid molecules are ionized?

Hints:

$$
\begin{gathered}
i=\frac{\Delta T_{\text {measured }}}{\Delta T_{\text {theoretical }}} \\
\text { percentage ionization }=\frac{\left[\mathrm{H}^{+}\right]}{C_{\text {total acetic acid }}} \times 100=\frac{\left[\mathrm{CH}_{3} \mathrm{CO}_{2}^{-}\right]}{C_{\text {total acetic acid }}} \times 100
\end{gathered}
$$

