Gas Laws in Chemical Reactions

Problem 6-87

A mixture of $1.00 \mathrm{~g} \mathrm{H}_{2}$ and $8.60 \mathrm{~g} \mathrm{O}_{2}$ is introduced into a $1.500-\mathrm{L}$ flask at $25^{\circ} \mathrm{C}$. (a) What is the total gas pressure in the flask? (b) When the mixture is ignited, an explosive reaction occurs in which water is the only product. What is the total gas pressure when the flask is returned to $25^{\circ} \mathrm{C}$? (The vapor pressure of water at $25^{\circ} \mathrm{C}$ is 23.8 mmHg .)

Solution:

This is a combination of a limiting reactant problem and a problem involving gas stoichiometry.
(a)

First, calculate molar quantities of the reactants:
$n_{\mathrm{H}_{2}}=1.00 \mathrm{~g} \mathrm{H}_{2} / 2.016 \frac{\mathrm{~g}}{\mathrm{~mol}}=0.4960 \mathrm{~mol} \mathrm{H}_{2}$
$n_{\mathrm{O}_{2}}=8.60 \mathrm{~g} \mathrm{O}_{2} / 32.00 \frac{\mathrm{~g}}{\mathrm{~mol}}=0.2688 \mathrm{~mol} \mathrm{O}_{2}$

The pressure in the container is independent of the identities of the gases so calculate the total moles of gas and the pressure in the container:

$$
\begin{aligned}
& n_{\text {total }}=0.7648 \mathrm{~mol} \\
& T=25^{\circ} \mathrm{C}+273.15=298.15 \mathrm{~K} \\
& V=1.500 \mathrm{~L} \\
& P=\frac{n R T}{V}=\frac{(0.7648 \mathrm{~mol})\left(0.082059 \frac{\mathrm{~L} \cdot \mathrm{~atm}}{\mathrm{~mol} \cdot \mathrm{~K}}\right)(298.15 \mathrm{~K})}{1.500 \mathrm{~L}}=12.5 \mathrm{~atm}
\end{aligned}
$$

(b) $2 \mathrm{H}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{H}_{2} \mathrm{O}(\mathrm{g})$

Now, work out the limiting reactant problem and calculate the amount of excess reactant:

Amount of $\mathrm{H}_{2} \mathrm{O}$ produced:
$n_{\mathrm{H}_{2}}=0.4960 \mathrm{~mol} \mathrm{H}_{2} \quad n_{\mathrm{H}_{2} \mathrm{O}}=0.4960 \mathrm{~mol} \mathrm{H}_{2} \times \frac{2 \mathrm{~mol} \mathrm{H}_{2} \mathrm{O}}{2 \mathrm{~mol} \mathrm{H}_{2}}=0.4960 \mathrm{~mol} \mathrm{H}_{2} \mathrm{O}$
$n_{\mathrm{O}_{2}}=0.2688 \mathrm{~mol} \mathrm{O}_{2} \quad n_{\mathrm{H}_{2} \mathrm{O}}=0.2688 \mathrm{~mol} \mathrm{O}_{2} \times \frac{2 \mathrm{~mol} \mathrm{H}_{2} \mathrm{O}}{1 \mathrm{~mol} \mathrm{H}_{2}}=0.5376 \mathrm{~mol} \mathrm{H}_{2} \mathrm{O}$
The H_{2} is limiting
$n_{\mathrm{H}_{2} \mathrm{O} \text { formed }}=0.4960 \mathrm{~mol} \mathrm{H}_{2} \mathrm{O}$
$n_{\mathrm{O}_{2} \text { remaining }}=0.2688 \mathrm{~mol} \mathrm{O}_{2}-0.4960 \mathrm{~mol} \mathrm{H}_{2} \times \frac{1 \mathrm{~mol} \mathrm{O}_{2}}{2 \mathrm{~mol} \mathrm{H}_{2}}=0.0208 \mathrm{~mol} \mathrm{O}_{2}$

When cooled to $25^{\circ} \mathrm{C}$, almost all of the water vapor will condense to liquid water.
$P=\frac{n R T}{V}=\frac{\left(0.0208 \mathrm{~mol} \mathrm{O}_{2}\right)\left(0.082059 \frac{\mathrm{~L} \cdot \mathrm{~atm}}{\mathrm{~mol} \cdot \mathrm{~K}}\right)(298.15 \mathrm{~K})}{1.500 \mathrm{~L}}=0.339 \mathrm{~atm}$

However, there is a small amount of pressure contribution from the vapor pressure of the water (23.8 mmHg)
$P_{\text {total }}=0.339 \mathrm{~atm}+23.8 \mathrm{mmHg} \times \frac{1 \mathrm{~atm}}{760 \mathrm{mmHg}}=0.371 \mathrm{~atm}$ total pressure

