An Example of Heterogeneous Stoichiometric Calculations Involving the Gas Laws

6-48
A method of removing $\mathrm{CO}_{2}(\mathrm{~g})$ from a spacecraft is to allow the CO_{2} to react with LiOH . How many liters of $\mathrm{CO}_{2}(\mathrm{~g})$ at $25.9^{\circ} \mathrm{C}$ and 751 torr can be removed per kilogram of LiOH consumed?

$$
2 \mathrm{LiOH}(\mathrm{~s})+\mathrm{CO}_{2}(\mathrm{~g}) \rightarrow \mathrm{Li}_{2} \mathrm{CO}_{3}(\mathrm{~s})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l})
$$

This is a stoichiometry problem involving a solid and a gas.
First, get constants and "knowns" properly defined...
$T=25.9^{\circ} \mathrm{C}+273.2 \mathrm{~K}=299.1 \mathrm{~K}$
$P=\frac{751 \mathrm{torr}}{760 \frac{\mathrm{tarr}}{\mathrm{atm}}}=0.9882 \mathrm{~atm}$

Now, calculate the molar quantity of CO_{2} consumed per kg of LiOH :
$n_{\mathrm{CO}_{2}}=1000 \mathrm{~g} \mathrm{LiOH} \times \frac{1 \mathrm{~mol} \mathrm{LiOH}}{24.02 \mathrm{~g} \mathrm{LiOH}} \times \frac{1 \mathrm{~mol} \mathrm{CO}_{2}}{2 \mathrm{~mol} \mathrm{LiOH}}=20.815 \mathrm{~mol} \mathrm{CO}_{2}$

Finally, calculate the volume of CO_{2} consumed per kg LiOH:
$\frac{P V}{n T}=R \quad$ so..... $\quad V=\frac{n T R}{P}=\frac{(20.815 \mathrm{~mol})(299.1 \mathrm{~K})\left(0.08206 \frac{\mathrm{~L} \cdot \mathrm{~atm}}{\mathrm{~mol} \cdot \mathrm{~K}}\right)}{0.9882 \mathrm{~atm})}=517 \mathrm{~L}$

6-32

A sample of $\mathrm{N}_{2}(\mathrm{~g})$ occupies a volume of 42.0 mL under the existing barometric pressure. Increasing the pressure by 85 mm Hg reduces the volume to 37.7 mL . What is the prevailing barometric pressure, in millimeters of mercury?
$V_{1}=42.0 \mathrm{~mL}$
$P_{1}=$ unknown
$V_{2}=37.7 \mathrm{~mL}$
$P_{2}=\mathrm{P}_{1}+85 \mathrm{mmHg}$
$P_{1}(42.0 \mathrm{~mL})=\left(P_{1}+85 \mathrm{mmHg}\right)(37.7 \mathrm{~mL})$
$1.114 P_{1}=P_{1}+85 \mathrm{mmHg}$
$0.114 P_{1}=85 \mathrm{mmHg}$
$P_{1}=P_{\text {barometric }}=745 \mathrm{mmHg}$

