Stoichiometry in Simultaneous Reactions

Problem 4-71

How many grams of HCl are consumed in the reaction of 425 g of a mixture containing 35.2% mgCO_{3} and $64.8 \% \mathrm{Mg}(\mathrm{OH})_{2}$, by mass?

$$
\begin{gathered}
\mathrm{Mg}(\mathrm{OH})_{2}+2 \mathrm{HCl} \rightarrow \mathrm{MgCl}_{2}+2 \mathrm{H}_{2} \mathrm{O} \\
\mathrm{MgCO}_{3}+2 \mathrm{HCl} \rightarrow \mathrm{MgCl}_{2}+\mathrm{H}_{2} \mathrm{O}+\mathrm{CO}_{2}(\mathrm{~g})
\end{gathered}
$$

Solution:

Start by recognizing that the percentages will give you the masses of $\mathrm{Mg}(\mathrm{OH})_{2}$ and MgCO_{3}.

$$
\begin{aligned}
& m_{\mathrm{MgCO}_{3}}=425 \mathrm{~g} \mathrm{mix} \times 0.352 \frac{\mathrm{~g} \mathrm{MgCO}_{3}}{\mathrm{~g} \text { mix }}=149.6 \mathrm{~g} \mathrm{MgCO}_{3} \\
& m_{\mathrm{Mg}_{\mathrm{OH}} \mathrm{OH}_{2}}=425 \mathrm{~g} \mathrm{mix} \times 0.648 \frac{\mathrm{~g} \mathrm{Mg}(\mathrm{OH})_{2}}{\mathrm{~g} \text { mix }}=275.4 \mathrm{~g} \mathrm{Mg}(\mathrm{OH})_{2}
\end{aligned}
$$

Convert those quantities to their respective molar amounts and calculate the stoichiometric amount of HCl that will react with each salt.

$$
\begin{aligned}
& n_{\mathrm{HCl}^{2} \text { reacting with } \mathrm{MgCO}_{3}}=\left(149.6 \mathrm{~g} \mathrm{MgCO}_{3} / 84.316 \mathrm{~g} / \mathrm{mol}\right) \times \frac{2 \mathrm{~mol} \mathrm{HCl}}{1 \mathrm{~mol} \mathrm{MgCO}_{3}}=3.5486 \mathrm{~mol} \mathrm{HCl} \\
& n_{\mathrm{HCl} \text { reacting with } \mathrm{Mg}(\mathrm{OH})_{2}}=\left(275.4 \mathrm{~g} \mathrm{Mg}(\mathrm{OH})_{2} / 58.465 \% / \mathrm{mol}\right) \times \frac{2 \mathrm{~mol} \mathrm{HCl}}{1 \mathrm{~mol} \mathrm{Mg}(\mathrm{OH})_{2}}=9.4210 \mathrm{~mol} \mathrm{HCl}
\end{aligned}
$$

Sum the two to get the total quantity of HCl that reacts:

$$
n_{\text {Total }}=3.5486 \mathrm{~mol}+9.4210 \mathrm{~mol}=12.970 \mathrm{~mol} \mathrm{HCl}
$$

And calculate the mass:

$$
m_{\mathrm{HCl}}=12.970 \mathrm{~mol} \mathrm{HCl} \times 36.461 \frac{\mathrm{~g}}{\mathrm{~mol}}=473 \mathrm{~g} \mathrm{HCl}
$$

