Stoichiometry in Indirect Titration

Problem 4-54

A $25.00-\mathrm{mL}$ sample of $\mathrm{HCl}(\mathrm{aq})$ was added to a $0.1000-\mathrm{g}$ sample of CaCO_{3}. All the CaCO_{3} reacted, leaving some excess $\mathrm{HCl}(\mathrm{aq})$.

$$
\mathrm{CaCO}_{3}(\mathrm{~s})+2 \mathrm{HCl}(\mathrm{aq}) \rightarrow \mathrm{CaCl}_{2}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l})+\mathrm{CO}_{2}(\mathrm{~g})
$$

The excess $\mathrm{HCl}(\mathrm{aq})$ required 43.82 mL of $0.01185 \mathrm{M} \mathrm{Ba}(\mathrm{OH})_{2}(\mathrm{aq})$ to complete the following reaction. What is the molarity of the original $\mathrm{HCl}(\mathrm{aq})$?

$$
2 \mathrm{HCl}(\mathrm{aq})+\mathrm{Ba}(\mathrm{OH})_{2}(\mathrm{aq}) \rightarrow \mathrm{BaCl}_{2}(\mathrm{aq})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})
$$

Solution:

This is two individual problems. The first part is to calculate how much $\mathrm{HCl}(\mathrm{aq})$ reacted with the CaCO_{3} and the second part is to calculate how much $\mathrm{HCl}(\mathrm{aq})$ was left over. The sum of the two molar quantities of $\mathrm{HCl}(\mathrm{aq})$ is the total amount in the original 25 mL sample.

First, the amount of HCl that reacted with CaCO_{3} :

$$
n_{\mathrm{HCl}}=\left(0.1000 \mathrm{~g} \mathrm{CaCO}_{3} / 100.09 \frac{\mathrm{~g}}{\mathrm{~mol}}\right) \times \frac{2 \mathrm{~mol} \mathrm{HCl}}{1 \mathrm{~mol} \mathrm{CaCO}_{3}}=0.0019982 \mathrm{~mol} \mathrm{HCl}
$$

Now, the remaining amount of HCl from the titration:
$n_{\mathrm{HCl}}=\left(0.01185 \frac{\mathrm{~mol} \mathrm{Ba}(\mathrm{OH})_{2}}{\mathrm{~L} \mathrm{soln}} \times 0.04382 \mathrm{~L} \mathrm{soln}\right) \times \frac{2 \mathrm{~mol} \mathrm{HCl}}{1 \mathrm{~mol} \mathrm{Ba}(\mathrm{OH})_{2}}=0.0010385 \mathrm{~mol} \mathrm{HCl}$

The total amount of HCl in the original 25.00 mL is
$n_{\text {total }}=0.0019982 \mathrm{~mol}+0.0010385 \mathrm{~mol}=0.003037 \mathrm{~mol} \mathrm{HCl}$

And the concentration is:
$C_{\mathrm{HCl}}=\frac{0.003037 \mathrm{~mol} \mathrm{HCl}}{0.02500 \mathrm{~L}}=0.1215 \mathrm{M} \mathrm{HCl}$

