Reaction Stoichiometry I
 Mass-Mole Relationships and Limiting Reactant

1. According to the equation given on the board, what mass of H_{2} can be produced by the reaction of 10.0 g of Zn with the hydrochloric acid?

$$
\begin{gathered}
\mathrm{Zn}_{(\mathrm{s})}+2 \mathrm{HCl}_{(\mathrm{aq})} \rightarrow \mathrm{ZnCl}_{2(\mathrm{aq})}+\mathrm{H}_{2(\mathrm{~g})} \\
m_{\mathrm{H}_{2}}=10.0 \mathrm{~g} \mathrm{Zn} \times \frac{1 \mathrm{~mol} \mathrm{Zn}}{63.59 \mathrm{~g} \mathrm{Zn}} \times \frac{1 \mathrm{~mol} \mathrm{H}_{2}}{1 \mathrm{~mol} \mathrm{Zn}} \times 2.016^{\mathrm{gH}_{2}} / \mathrm{mol} \mathrm{H}_{2}
\end{gathered}=0.3083 \mathrm{~g}=0.308 \mathrm{~g} \mathrm{H}_{2} .
$$

2. According to the equation of the reaction of H_{2} with O_{2}, what mass of water can be made from the mass of hydrogen from question 1?

$$
\begin{gathered}
2 \mathrm{H}_{2(\mathrm{~g})}+\mathrm{O}_{2(\mathrm{~g})} \rightarrow 2 \mathrm{H}_{2} \mathrm{O}_{(\mathrm{g})} \\
m_{\mathrm{H}_{2} \mathrm{O}}=0.3083 \mathrm{~g} \mathrm{H}_{2} / 2.016 \frac{\mathrm{~g} \mathrm{H}_{2} \mathrm{H}_{2}}{\mathrm{~mol} \mathrm{H}_{2}} \times \frac{2 \mathrm{~mol} \mathrm{H}_{2} \mathrm{O}}{2 \mathrm{~mol} \mathrm{H}_{2}} \times 18.015 \frac{\mathrm{~g} \mathrm{H}_{2}}{\mathrm{~mol} \mathrm{H}_{2}}=2.76 \mathrm{~g} \mathrm{H}_{2} \mathrm{O}
\end{gathered}
$$

3. For the equation...

$$
\mathrm{AgNO}_{3(\mathrm{aq})}+\mathrm{BaCl}_{2(\mathrm{aq})} \rightarrow \mathrm{AgCl}_{(\mathrm{s})}+\mathrm{Ba}\left(\mathrm{NO}_{3}\right)_{2(\mathrm{aq})}
$$

a) Balance the equation

$$
2 \mathrm{AgNO}_{3(\mathrm{aq})}+\mathrm{BaCl}_{2(\mathrm{aq})} \rightarrow 2 \mathrm{AgCl}_{(\mathrm{s})}+\mathrm{Ba}\left(\mathrm{NO}_{3}\right)_{2(\mathrm{aq})}
$$

b) How many moles of silver chloride can be produced starting with 2.0 moles of AgNO_{3} ? ... 1.5 moles BaCl_{2} ?

$$
\begin{aligned}
& n_{{\mathrm{AgCl} \mathrm{from} \mathrm{AgNO}_{3}}=1.5 \mathrm{~mol} \mathrm{BaCl}}^{2} \times \frac{2 \mathrm{~mol} \mathrm{AgCl}}{1 \mathrm{~mol} \mathrm{BaCl}_{2}}=3.0 \mathrm{~mol} \mathrm{AgCl}
\end{aligned}
$$

c) How many mol of AgCl will be produced if 3.00 g of BaCl_{2} react with a sufficient amount of AgNO_{3} ?

$$
n_{\mathrm{AgCl}}=3.00 \mathrm{~g} \mathrm{BaCl}_{2} \times \frac{1 \mathrm{~mol} \mathrm{BaCl}_{2}}{208.24 \mathrm{~g} \mathrm{BaCl}_{2}} \times \frac{2 \mathrm{~mol} \mathrm{AgCl}}{1 \mathrm{~mol} \mathrm{BaCl}_{2}}=0.0288 \mathrm{~mol} \mathrm{AgCl}
$$

d. What mass of BaCl_{2} is necessary to form 5.15 g of AgCl ? (show the solution using the mass conservation and the "mole-method".

$$
m_{\mathrm{BaCl}_{2}}=5.15 \mathrm{~g} \mathrm{AgCl}^{2} \times \frac{1 \mathrm{~mol} \mathrm{AgCl}}{143.3 \mathrm{~g} \mathrm{AgCl}} \times \frac{1 \mathrm{~mol} \mathrm{BaCl}_{2}}{2 \mathrm{~mol} \mathrm{AgCl}} \times 208.24 \frac{\mathrm{~g} \mathrm{BaCl}_{2}}{\mathrm{~mol} \mathrm{BaCl}_{2}}=3.74 \mathrm{~g} \mathrm{BaCl}_{2}
$$

4. What mass of water would be formed from the reaction of $5.0 \mathrm{~g} \mathrm{H}_{2}$, and $30.0 \mathrm{~g} \mathrm{O}_{2}$? How much of the excess reagent remains unreacted?

$$
\begin{aligned}
& 2 \mathrm{H}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{H}_{2} \mathrm{O}(\mathrm{~g}) \\
& n_{\mathrm{H}_{2} \mathrm{O} \text { from } \mathrm{H}_{2}}=\left(5.0 \mathrm{~g} \mathrm{H}_{2} / 2.016 \frac{\mathrm{~g} \mathrm{H}_{2}}{\mathrm{~mol} \mathrm{H}_{2}}\right) \times \frac{2 \mathrm{~mol} \mathrm{H}_{2} \mathrm{O}}{2 \mathrm{~mol} \mathrm{H}_{2}}=2.48 \mathrm{~mol} \mathrm{H}_{2} \mathrm{O} \\
& n_{\mathrm{H}_{2} \mathrm{Ofrom} \mathrm{O}_{2}}=\left(30.0 \mathrm{~g} \mathrm{O}_{2} / 32.00 \frac{\mathrm{~g} \mathrm{O}_{2}}{\mathrm{~mol} \mathrm{O}_{2}}\right) \times \frac{2 \mathrm{~mol} \mathrm{H}_{2} \mathrm{O}}{1 \mathrm{~mol} \mathrm{O}_{2}}=1.875 \mathrm{~mol} \mathrm{H}_{2} \mathrm{O}
\end{aligned}
$$

O_{2} is limiting reactant so it determines the mass of $\mathrm{H}_{2} \mathrm{O}$ that can be produced:

$$
m_{\mathrm{H}_{2} \mathrm{O}}=1.875 \mathrm{~mol} \mathrm{H}_{2} \mathrm{O} \times 18.015 \frac{\mathrm{gH}_{2} \mathrm{O}}{\mathrm{~mol} \mathrm{H}_{2} \mathrm{O}}=34 \mathrm{~g} \mathrm{H}_{2} \mathrm{O}
$$

Determine the mass of H_{2} remaining:

$$
\begin{aligned}
& m_{\mathrm{H}_{\text {r reacted }}}=1.875 \mathrm{~mol} \mathrm{H}_{2} \mathrm{O} \times \frac{2 \mathrm{~mol} \mathrm{H}_{2}}{2 \mathrm{~mol} \mathrm{H}_{2} \mathrm{O}} \times 2.016 \frac{\mathrm{~g} \mathrm{H}_{2}}{\mathrm{~mol} \mathrm{H}_{2}}=3.78 \mathrm{~g} \mathrm{H}_{2} \\
& m_{\mathrm{H}_{2} \text { remaining }}=5.0 \mathrm{~g} \mathrm{H}_{2}-3.78 \mathrm{~g} \mathrm{H}_{2}=1.2 \mathrm{~g} \mathrm{H}_{2} \text { remains unreacted }
\end{aligned}
$$

5. Calculate the mass of iron(III) chloride produced when 1.05 g iron(II) chloride reacts with 1.10 g of potassium permanganate $\left(\mathrm{KMnO}_{4}\right)$ according the to the equation...

$$
\begin{aligned}
& 5 \mathrm{FeCl}_{2}+\mathrm{KMnO}_{4}+8 \mathrm{HCl} \rightarrow 5 \mathrm{FeCl}_{3}+\mathrm{MnCl}_{2}+\mathrm{KCl}+4 \mathrm{H}_{2} \mathrm{O} \\
& M_{\mathrm{FeCl}_{2}}=126.75 \% / \mathrm{mol}^{2} \quad M_{\mathrm{FeCl}_{3}}=162.21 \% / \mathrm{mol} \quad M_{\mathrm{KMnO}_{4}}=158.04 \mathrm{~g} / \mathrm{mol}^{2} \\
& n_{\text {PeCl from FeCl }_{2}}=1.05 \mathrm{~g} \mathrm{FeCl}_{2} \times \frac{1 \mathrm{~mol} \mathrm{FeCl}_{2}}{126.75 \mathrm{~g} \mathrm{FeCl}_{2}} \times \frac{1 \mathrm{~mol} \mathrm{FeCl}_{3}}{1 \mathrm{~mol} \mathrm{FeCl}_{2}}=8.284 \times 10^{-3} \mathrm{~mol} \mathrm{FeCl}_{3} \\
& n_{\text {FeCl }_{3} \text { from KMnO }}^{4} \text { }=1.10 \mathrm{~g} \mathrm{KMnO}_{4} \times \frac{1 \mathrm{~mol} \mathrm{FeCl}_{2}}{158.04 \mathrm{~g} \mathrm{KMnO}_{4}} \times \frac{5 \mathrm{~mol} \mathrm{FeCl}_{3}}{1 \mathrm{~mol} \mathrm{KMnO}_{4}}=3.480 \times 10^{-2} \mathrm{~mol} \mathrm{FeCl}_{3}
\end{aligned}
$$

FeCl_{2} is limiting:
$m_{\mathrm{FeCl}_{3}}=8.284 \times 10^{-3} \mathrm{~mol} \mathrm{FeCl}_{3} \times 162.21 \frac{\mathrm{~g} \mathrm{FeCl}_{3}}{\mathrm{~mol} \mathrm{Fecl}_{3}}=1.34 \mathrm{~g} \mathrm{FeCl}_{3}$
Now calculate the mass of KMnO_{4} remaining.

