Formula Stoichiometry and Mass Change in a Reaction

Anhydrous sodium sulfate, $\mathrm{Nas}_{2} \mathrm{SO}_{4}$, absorbs water vapor and is converted to the decahydrate, $\mathrm{Na}_{2} \mathrm{SO}_{4} \cdot 10 \mathrm{H}_{2} \mathrm{O}$. How much would the mass of 3.50 g of anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ increase if converted completely to the decahydrate?

Solution:
This problem asks only to convert mass of $\mathrm{Na}_{2} \mathrm{SO}_{4}$ to mass of $\mathrm{Na}_{2} \mathrm{SO}_{4} \cdot 10 \mathrm{H}_{2} \mathrm{O}$.

By inspection, the quantity (in moles) of $\mathrm{Na}_{2} \mathrm{SO}_{4}$ is the same as $\mathrm{Na}_{2} \mathrm{SO}_{4} \cdot 10 \mathrm{H}_{2} \mathrm{O}$.
$M_{\mathrm{Na}_{2} \mathrm{SO}_{4}}=142.04 \frac{\mathrm{~g}}{\mathrm{~mol}} \quad M_{\mathrm{Na}_{2} \mathrm{SO}_{4} \cdot 10 \mathrm{H}_{2} \mathrm{O}}=322.19 \frac{\mathrm{~g}}{\mathrm{~mol}}$
$n_{\mathrm{Na}_{2} \mathrm{SO}_{4} \cdot 10 \mathrm{H}_{2} \mathrm{O}}=\left(3.50 \mathrm{~g} \mathrm{Na}_{2} \mathrm{SO}_{4} / 142.04 \frac{\mathrm{~g} \mathrm{Na}_{2} \mathrm{SO}_{4}}{\mathrm{~mol} \mathrm{Na}_{2} \mathrm{SO}_{4}}\right) \times \frac{1 \mathrm{~mol} \mathrm{Na}_{2} \mathrm{SO}_{4} \cdot 10 \mathrm{H}_{2} \mathrm{O}}{1 \mathrm{~mol} \mathrm{Na}_{2} \mathrm{SO}_{4}}=0.02464 \mathrm{~mol} \mathrm{Na}{ }_{2} \mathrm{SO}_{4} \cdot 10 \mathrm{H}_{2} \mathrm{O}$
$m_{\mathrm{Na}_{2} \mathrm{SO}_{4} \cdot 10 \mathrm{H}_{2} \mathrm{O}}=0.02464 \mathrm{~mol} \mathrm{Na} \mathrm{S}_{2} \mathrm{SO}_{4} \cdot 10 \mathrm{H}_{2} \mathrm{O} \times 322.19 \frac{\mathrm{~g} \mathrm{a}_{2} \mathrm{SO}_{4} \cdot 10 \mathrm{H}_{2} \mathrm{O}}{\mathrm{mol} \mathrm{Na}_{2} \mathrm{SO}_{4} \cdot 10 \mathrm{H}_{2} \mathrm{O}}=7.94 \mathrm{~g} \mathrm{Na}_{2} \mathrm{SO}_{4} \cdot 10 \mathrm{H}_{2} \mathrm{O}$

Mass increase is 4.44 g

