Formula Stoichiometry and Parallel Production of a Product

A 0.732-g mixture of methane, CH_{4}, and ethane, $\mathrm{C}_{2} \mathrm{H}_{6}$, is burned, yielding $2.064 \mathrm{~g} \mathrm{CO}_{2}$. What is the percent composition of this mixture, (a) by mass; (b) on a mole basis?

Solution:
$m_{\text {mixture }}=0.732 \mathrm{~g}=m_{\mathrm{CH}_{4}}+m_{\mathrm{C}_{2} \mathrm{H}_{6}}$
and...
$n_{\mathrm{CO}_{2}}=\frac{2.064 \mathrm{~g} \mathrm{CO}_{2}}{44.01 \frac{\mathrm{~g}}{\mathrm{~mol}}}=0.046898 \mathrm{~mol} \mathrm{CO} 2$
so...
$n_{\mathrm{CO}_{2}}=0.046898 \mathrm{~mol} \mathrm{CO}_{2}=\frac{m_{\mathrm{CH}_{4}}}{16.043 \frac{\mathrm{~g}}{\mathrm{~mol}}} \times \frac{1 \mathrm{~mol} \mathrm{CO}_{2}}{1 \mathrm{~mol} \mathrm{CH}_{4}}+\frac{m_{\mathrm{C}_{2} \mathrm{H}_{6}}}{30.070 \frac{\mathrm{~g}}{\mathrm{~mol}}} \times \frac{2 \mathrm{~mol} \mathrm{CO}_{2}}{1 \mathrm{~mol} \mathrm{C}_{2} \mathrm{H}_{6}}$
substituting the mass balance equation...
$0.046898 \mathrm{~mol} \mathrm{CO}_{2}=\frac{m_{\mathrm{CH}_{4}}}{16.043 \frac{\mathrm{~g}}{\mathrm{~mol}}} \times \frac{1 \mathrm{~mol} \mathrm{CO}_{2}}{1 \mathrm{~mol} \mathrm{CH}_{4}}+\frac{\left(0.732 \mathrm{~g}-m_{\mathrm{CH}_{4}}\right)}{30.070 \frac{\mathrm{~g}}{\mathrm{~mol}}} \times \frac{2 \mathrm{~mol} \mathrm{CO}_{2}}{1 \mathrm{~mol} \mathrm{C}_{2} \mathrm{H}_{6}}$

You can prove this easily: divide through by $\mathrm{mol} \mathrm{CO}_{2}$ and follow units on molar mass through, the $m_{\mathrm{CH}_{4}}$ will come out in grams. Knowing that the units will work if we did everything correctly...
$0.046898=0.062332 m_{\mathrm{CH}_{4}}+0.048686-0.066511 m_{\mathrm{CH}_{4}}$
collect terms and solve...
$0.0041795 m_{\text {CH }_{4}}=0.001788$
$m_{\mathrm{CH}_{4}}=0.4278 \mathrm{~g} \mathrm{CH}_{4}$
$m_{C_{2} H_{6}}=0.732 \mathrm{~g}-0.4278 \mathrm{~g} \mathrm{CH}_{4}=0.3042 \mathrm{~g} \mathrm{C}_{2} \mathrm{H}_{6}$

Percentage compositions:
(a) by mass...
$\% \mathrm{CH}_{4}=\frac{0.4278 \mathrm{~g} \mathrm{CH}_{4}}{0.732 \mathrm{~g}} \times 100=58.4 \% \mathrm{w} / \mathrm{w} \mathrm{CH}_{4}$
$\% C_{2} H_{6}=\frac{0.3042 \mathrm{~g} \mathrm{C}_{2} \mathrm{H}_{6}}{0.732 \mathrm{~g}} \times 100=41.6 \% \mathrm{w} / \mathrm{w} \mathrm{C}_{2} \mathrm{H}_{6}$
(b) by moles...
$n_{\mathrm{CH}_{4}}=\frac{0.4278 \mathrm{~g} \mathrm{CH}_{4}}{16.043 \frac{\mathrm{~g}}{\mathrm{~mol}}}=0.02667 \mathrm{~mol} \mathrm{CH}_{4}$
$n_{\mathrm{C}_{2} \mathrm{H}_{6}}=\frac{0.3042 \mathrm{~g} \mathrm{C}_{2} \mathrm{H}_{6}}{30.070 \frac{\mathrm{~g}}{\mathrm{~mol}}}=$
$n_{\text {total }}=0.02667 \mathrm{~mol} \mathrm{CH}_{4}+0.01011 \mathrm{~mol} \mathrm{C}_{2} \mathrm{H}_{6}=0.03678 \mathrm{~mol}$
mol percentage $\mathrm{CH}_{4}=\frac{0.02667 \mathrm{~mol} \mathrm{CH}_{4}}{0.03678 \mathrm{~mol}} \times 100=72.5 \%($ by mol $) \mathrm{CH}_{4}$
mol percentage $\mathrm{C}_{2} \mathrm{H}_{6}=\frac{0.01011 \mathrm{~mol} \mathrm{C}_{2} \mathrm{H}_{6}}{0.03678 \mathrm{~mol}} \times 100=27.5 \%($ by mol $) \mathrm{C}_{2} \mathrm{H}_{6}$

